Skip to main content
Log in

Impact of light pollution on the visibility of astronomical objects in medium-sized cities in Central Europe on the example of the city of Rzeszów, Poland

  • Published:
Journal of Astrophysics and Astronomy Aims and scope Submit manuscript

Abstract

This paper discusses the influence of light pollution of the night sky on the conditions of visibility of astronomical objects such as planets, stars and comets. This phenomenon has a huge impact on the observability of astronomical objects, especially in cities, where the brightness of the sky makes it difficult or even impossible to conduct astronomical observations. The main purpose of this article is to measure and analyse the surface brightness of the night sky in Rzeszów and its surroundings. A device called the Sky Quality Meter was used to measure the brightness of the night sky. This paper presents measurement results for the years 2015 and 2018, from which it is clear that the quality of the night sky has been deteriorated in terms of the observability of celestial bodies. As an example, the numerical value of the measurement for the centre of Rzeszów has been taken. In 2015, this value was \(18.70\pm 1.87\) mag/arcsec\(^{2}\), while in 2018, it was equal to \(16.73\pm 1.67\) mag/arcsec\(^{2}\). The results obtained were used to analyse the visibility of celestial bodies. Here, particular attention was paid to the analysis of the visibility of comets (also during the outburst), in the context of increasing light pollution of the night sky. Observers in neighboring villages have also experienced a change in the sky quality from Bortle Class V to Class VII, requiring objects to be approximately one magnitude brighter in order to be visible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aubé M., Kocifaj M. 2012, Using two light-pollution models to investigate artificial sky radiances at Canary Islands observatories, MNRAS, 422, 819 (2012)

    Article  ADS  Google Scholar 

  • Bohren C. F., Huffman D. 1983, Absorption and Scattering of Light by Small Particles, Wiley, New York

    Google Scholar 

  • Bortle J. E. 2001, Introducing the Bortle Dark-Sky Scale, Sky and Telescope, vol. 101, p. 126

    Google Scholar 

  • Cabot H. et al. 1996, Complementary studies on the unexpected activity of comet Schwassmann–Wachmann 1, Planet & Space Sci., 44, 1015

    Article  ADS  Google Scholar 

  • Cinzano P., Falchi F., Elvidge C. D. 2001a, Naked-eye star visibility and limiting magnitude mapped from DMSP-OLS satellite data, MNRAS, 323, 34

    Article  ADS  Google Scholar 

  • Cinzano P., Falchi F., Elvidge C. D. 2001b, The first World Atlas of the artificial night sky brightness, MNRAS, 328, 689

    Article  ADS  Google Scholar 

  • Cinzano P., Elvidge C. D. 2004, Night sky brightness at sites from DMSP-OLS satellite measurements, MNRAS, 353, 1107

    Article  ADS  Google Scholar 

  • Cinzano P. 2004, A portable spectrophotometer for light pollution measurements, Memorie della Società Astronomica Italiana Suppl., 5, 395

    ADS  Google Scholar 

  • Curtis H. D. 1903, On the limits of unaided vision, Lick Observatory Bull., 2, 67

    Article  ADS  Google Scholar 

  • Davidsson B. J. R., Skorov Y. V. 2002, On the Light-Absorbing Surface Layer of Cometary Nuclei, I, Radiative Transfer, Icarus, 156, 223

    Article  ADS  Google Scholar 

  • Enzian A. et al. 1997, A 2 1/2 D thermodynamic model of cometary nuclei, I, Application to the activity of comet 29P/Schwassmann–Wachmann 1, A&A, 319, 995

    ADS  Google Scholar 

  • Falchi F., Cinzano P., Kyba Ch., Portnov B. 2015, The New World Atlas of Artificial Sky Brightness, IAU Gen. Assemb. 22: 47038F

    ADS  Google Scholar 

  • Fernández J. A. et al. 1999, The population, magnitudes, and sizes of Jupiter family comets, A&A, 352, 327

    ADS  Google Scholar 

  • Garstang R. H. 1989, Night-sky brightness at observatories and sites, Astron. Soc. Pac., 101, 306

    Article  ADS  Google Scholar 

  • Gronkowski P. 2007, The search for a cometary outbursts mechanism: a comparison of various theories, Astron. Nachr., 328, 126

    Article  ADS  Google Scholar 

  • Gronkowski P. 2009, Cometary outbursts: the post-deep impact outlook on collisions as possible causes, MNRAS, 397, 883

    Article  ADS  Google Scholar 

  • Gronkowski P., Wesołowski M. 2012, Collisions of comets and meteoroids: the post stardust-NExT discussion, Astron. Nachr., 333, 721

    Article  ADS  Google Scholar 

  • Gronkowski P., Wesołowski M. 2015, A model of cometary outbursts: a new simple approach to the classical question, MNRAS, 451, 3068

    Article  ADS  Google Scholar 

  • Gronkowski P., Wesołowski M. 2016, A Review of Cometary Outbursts at Large Heliocentric Distances, Earth Moon Planets, 119, 23

    Article  ADS  Google Scholar 

  • Gronkowski P., Wesołowski M. 2017, Ejection of large particles from cometary nuclei in the shape of prolate ellipsoids, Astron. Nachr., 338, 385

    Article  ADS  Google Scholar 

  • Gronkowski P., Tralle I., Wesołowski M. 2018, Visibility of comets during their outbursts and the night sky light pollution – Use the Bortle scale, Astron. Nachr., 339, 37

    Article  ADS  Google Scholar 

  • Groussin O., Lamy P., Jorda L. 2004, The nuclei of comets 126P/IRAS and 103P/Hartley 2, A&A, 419, 375

    Article  ADS  Google Scholar 

  • Hughes D. W. (1990) Cometary outbursts: a review, R. Astron. Soc. Q. J., 31, 6

    Google Scholar 

  • Hughes D. W. 1991, Comet Halley’s outburst, MNRAS, 251, 26

    Article  ADS  Google Scholar 

  • Ivanova O. V. et al. 2011, Observations of the long-lasting activity of the distant Comets 29P Schwassmann–Wachmann 1, C/2003 WT42 (LINEAR) and C/2002 VQ94 (LINEAR), Icarus, 211, 559

    Article  ADS  Google Scholar 

  • Kossacki K. J., Szutowicz S. 2013, Activity of Comet 29P/Schwassmann–Wachmann 1, Icarus, 225, 111

    Article  ADS  Google Scholar 

  • Montalto M. et al. 2008, The comet 17P/Holmes 2007 outburst: the early motion of the outburst material, A&A, 479, L45

    Article  ADS  Google Scholar 

  • Reach W. T. et al. (2010) Explosion of Comet 17P/Holmes as revealed by the Spitzer Space Telescope. Icarus, 208: 276

    Article  ADS  Google Scholar 

  • Richardson J. E. et al. 2007, A ballistics analysis of the Deep Impact ejecta plume: Determining Comet Tempel 1’s gravity, mass, and density, Icarus, 190, 357

    Article  ADS  Google Scholar 

  • Richter N. B. 1954, Die Helligkeitsausbrüche des Kometen 1925 II und ihre Zusammenhänge mit der Sonnentätigkeit, Astron. Nachr., 281, 241

    Article  ADS  Google Scholar 

  • Ściȩżor T. 2013, A new astronomical method for determining the brightness of the night sky and its application to study long-term changes in the level of light pollution, MNRAS, 435, 303

    Article  ADS  Google Scholar 

  • Tancredi G. et al. 2000, A catalog of observed nuclear magnitudes of Jupiter family comets, A&A Suppl., 146, 73

    Article  ADS  Google Scholar 

  • Trigo-Rodriguez J. M. et al. 2008a, Outburst activity in comets. I. Continuous monitoring of comet 29P/Schwassmann–Wachmann 1, A&A, 485, 599

  • Trigo-Rodriguez J. M. et al. 2008b, All-Sky Cameras Detection and Telescope Follow-Up of the 17P/Holmes Outburst, Lunar Planetary Science XXXIX, 1627

  • Trigo-Rodriguez J. M. et al. 2010, Outburst activity in comets – II. A multiband photometric monitoring of comet 29P/Schwassmann–Wachmann 1, MNRAS, 409, 1682

  • Wesołowski M., Gronkowski P. 2018a, A new method for determining the mass ejected during the cometary outburst – Application to the Jupiter-family comets, New Astron., 62, 55

    Article  ADS  Google Scholar 

  • Wesołowski M., Gronkowski P. 2018b, A New Simple Model of Comets-Like Activity of Centaurs, Earth Moon and Planets, 121, 105

    Article  ADS  Google Scholar 

  • Zamorano J., de Sánchez M. A., Ocaña F. et al. 2016, Testing sky brightness models against radial dependency: A dense two dimensional survey around the city of Madrid, Spain, J. Quant. Spectrosc. Radiat. Transfer, 181, 52

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author would like to express his gratitude to the anonymous reviewer for very helpful comments that have considerably improved the quality of the manuscript. This paper was written due to the support the author received from the Centre for Innovation and Transfer of Natural Sciences and Engineering Knowledge at the University of Rzeszów.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Wesołowski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wesołowski, M. Impact of light pollution on the visibility of astronomical objects in medium-sized cities in Central Europe on the example of the city of Rzeszów, Poland. J Astrophys Astron 40, 20 (2019). https://doi.org/10.1007/s12036-019-9586-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12036-019-9586-1

Keywords

Navigation