Skip to main content
Log in

Melatonin and circadian control in mammals

  • Multi-author Review
  • Published:
Experientia Aims and scope Submit manuscript

Summary

Although pinealectomy has little influence on the circadian locomotor rhythms of laboratory rats, administration of the pineal hormone melatonin has profound effects. Evidence for this comes from studies in which pharmacological doses of melatonin are administered under conditions of external desynchronization, internal desynchronization, steady state light-dark conditions, and phase shifts of the zeitgeber. Taken together with recent findings on melatonin receptor concentration in the rat hypothalamus, particularly at the level of the suprachiasmatic nuclei, these results suggest that melatonin is a potent synchronizer of rat circadian rhythms and has a direct action on the circadian pacemaker. It is possible, therefore, that the natural role of endogenous melatonin is to act as an internal zeitgeber for the total circadian structure of mammals at the level of cell, tissue, organ, whole organism and interaction of that organism with environmental photoperiod changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  1. Arendt, J., Aldhous, M., English, J., Marks, V., and Arendt, J. H., Some effects of jet-lag and their alleviation by melatonin. Ergonomics30 (1987) 1379–1393.

    Article  Google Scholar 

  2. Arendt, J., Aldhous, M., and Wright, J., Synchronization of a disturbed sleep-wake cycle in a blind man by melatonin treatment. Lancet2 (1988) 772–773.

    Article  Google Scholar 

  3. Arendt, J., Bojkowski, C., Folkard, S., Franey, C., Marks, V., Minors, D., Waterhouse, J., Wever, R. A., Wildgurber, C., and Wright, J., Some effects of melatonin and the control of its secretion in humans. in: Photoperiodism, Melatonin and the Pineal. Ciba Foundation Symposium117, p. 266–283. Eds D. Evered and S. Clark. Pitman, London 1985.

    Google Scholar 

  4. Arendt, J., Borbely, A. A., Franey, C., and Wright, J., The effect of chronic, small doses of melatonin given in the late afternoon on fatigue in man: a preliminary study. Neurosci. Lett.45 (1984) 317–321.

    Article  CAS  PubMed  Google Scholar 

  5. Armstrong, S. M., Commentary on melatonin: A link between the environment and behavior. Integr. Psychiat.5 (1987) 3–26.

    Google Scholar 

  6. Armstrong, S. M., Melatonin: the internal zeitgeber of mammals?, in: Pineal Research Reviews, vol. 7, p. 157–202. Ed. R. J. Reiter Alan R. Liss, New York 1989.

    Google Scholar 

  7. Armstrong, S. M., Cassone, V. M., Chesworth, M. J., Redman, J. R., and Short, R. V., Synchronization of mammalian circadian rhythms by melatonin, in: Melatonin in Humans, p. 375–394. Eds R. J. Wurtman and F. Waldhauser, Springer-Verlag, Wien, New York 1986.

    Google Scholar 

  8. Armstrong, S. M., and Chesworth, M. J., Melatonin phase-shifts a mammalian circadian clock, in: Fundamentals and Clinics in Pineal Research, p. 195–198. Eds. G. P. Trentini, C. De Gaetani and P. Pévet. Raven Press, New York 1987.

    Google Scholar 

  9. Armstrong, S. M., and Redman, J., Melatonin administration: effects on rodent circadian rhythms, in: Photoperiodism, Melatonin and the Pineal. Ciba Foundation Symposium117, p. 188–207. Eds D. Evered and S. Clark, Pitman, London 1985.

    Google Scholar 

  10. Aschoff, J., Exogenous and endogenous components in circadian rhythms. Cold Spring Harbor Symp. quant. Biol.25 (1960) 11–28.

    Article  CAS  PubMed  Google Scholar 

  11. Cassone, V. M., Chesworth, M. J., and Armstrong, S. M., Dose-dependent entrainment of rat circadian rhythms by daily injection of melatonin. J. biol. Rhythms1 (1986) 219–229.

    Article  CAS  PubMed  Google Scholar 

  12. Cassone, V. M., Chesworth, M. J., and Armstrong, S. M., Entrainment of rat circadian rhythms by daily injections of melatonin depend upon the hypothalamic suprachiasmatic nuclei. Physiol. Behav.36 (1986) 1111–1121.

    Article  CAS  PubMed  Google Scholar 

  13. Cassone, V. M., Roberts, M. H., and Moore, R. Y., Effects of melatonin on 2-deoxy-(1-14C)-glucose uptake within rat suprachiasmatic nucleus. Am. J. Physiol.255 (1988) R332-R337.

    CAS  PubMed  Google Scholar 

  14. Chesworth, M. J., Cassone, V. M., and Armstrong, S. M., Effects of daily melatonin injections on activity rhythms of rats in constant light. Am. J. Physiol.253 (1987) R101-R107.

    CAS  PubMed  Google Scholar 

  15. Davis, F. C., and Mannion, J., Entrainment of hamster pup circadian rhythms by prenatal melatonin injections to the mother. Am. J. Physiol.255 (1988) R439-R448.

    CAS  PubMed  Google Scholar 

  16. Ellis, G. B., McKlveen, R. E., and Turek, F. W., Dark pulses affect the circadian rhythm of activity in hamsters kept in constant light. Am J. Physiol.242 (1982) R44-R50.

    CAS  PubMed  Google Scholar 

  17. Gwinner, E., Effects of pinealectomy on circadian locomotor activity rhythms in European starlings,Sturnus vulgaris. J. comp. Physiol.126 (1978) 123–129.

    Article  Google Scholar 

  18. Gwinner, E., and Benzinger, I., Synchronization of a circadian rhythm in pinealectomized European starlings by daily injections of melatonin. J. comp. Physiol.127 (1978) 209–213.

    Article  CAS  Google Scholar 

  19. Kavaliers, M., and Ralph, C. L., Circadian organization of an animal lacking a pineal organ; the young American alligator,Alligator mississippiensis. J. comp. Physiol.139 (1980) 287–292.

    Article  Google Scholar 

  20. Lerchl, A., and Küderling, I., Gonadal steroid excretion and daily locomotor activity patterns in saddle back tamarins (Saguinus fuscicollis; Callitrichidae; Primates): influence of melatonin and light-dark cycles, in: Advances in Pineal Research. Eds S. F. Pang and R. J. Reiter. John Libbey, London 1989.

    Google Scholar 

  21. Pittendrigh, C. S., and Daan, S., A functional analysis of circadian pacemakers in nocturnal rodents. V. Pacemaker complexity: A clock for all seasons. J. comp. Physiol.106 (1976) 333–355.

    Article  Google Scholar 

  22. Puchalski, W., and Lynch, G. R., Daily melatonin injections affect the expression of circadian rhythmicity in Djungarian hamsters kept under a long-day photoperiod. Neuroendocrinology48 (1988) 280–286.

    Article  CAS  PubMed  Google Scholar 

  23. Quay, W. B., Infrequency of pineal atrophy among birds and its relation to nocturnality. The Condor74 (1972) 33–45.

    Article  Google Scholar 

  24. Quay, W. B., Pineal homeostatic regulation of shifts in the circadian activity rhythm during maturation and aging. Trans. N.Y. Acad. Sci.34 (1972) 239–254.

    Article  CAS  PubMed  Google Scholar 

  25. Redman, J. R., and Armstrong, S. M., Reentrainment of rat circadian activity rhythms: effects of melatonin. J. Pineal Res.5 (1988) 203–215.

    Article  CAS  PubMed  Google Scholar 

  26. Redman, J. R., Armstrong, S. M., and Ng, K. T., Free-running activity rhythms in the rat: entrainment by melatonin. Science219 (1983) 1089–1091.

    Article  CAS  PubMed  Google Scholar 

  27. Reiter, R. J., The melatonin message: duration versus coincidence hypotheses. Life. Sci.40 (1987) 2119–2131.

    Article  CAS  PubMed  Google Scholar 

  28. Reppert, S. M., and Schwartz, W. J., Maternal coordination of the fetal biological clock in utero. Science220 (1983) 969–971.

    Article  CAS  PubMed  Google Scholar 

  29. Reppert, S. M., and Schwartz, W. J., Maternal endocrine extirpations do not abolish maternal coordination of the fetal circadian clock. Endocrinology119 (1986) 1763–1767.

    Article  CAS  PubMed  Google Scholar 

  30. Rppert, S. M., Weaver, D. R., Rivkees, S. A., and Stopa, E. G., Putative melatonin receptors in a human biological clock. Science242 (1988) 78–81.

    Article  Google Scholar 

  31. Sach, R. L., Lewy, A. J., and Hoban, T. M., Free-running melatonin rhythms in blind people: phase shifts with melatonin and triazolam administration, in: Temporal Disorder in Human Oscillatory Systems, p. 219–224. Eds L. Rensing, U. van der Heiden and M. C. Mackey. Springer-Verlag, Heidelberg 1987.

    Chapter  Google Scholar 

  32. Short, R. V., Method for minimizing disturbances in bodily performance and functions following rapid time changes. Australian Provisional Patent Application PF9418, May 18 (1983).

  33. Short, R. V., and Armstrong, S. M., Method for minimizing disturbances in circadian rhythms of bodily performance and function. Australian Patent Application PG4737, April 27 (1984).

  34. Steinlechner, S., and Heldmeier, G., Role of photoperiod and melatonin in seasonal acclimatization of the Djungarian hamster,Phodopus sungorus. Int. J. Biometeor.26 (1982) 329–337.

    Article  CAS  Google Scholar 

  35. Thomas, E. M. V., Effects of melatonin on female rat circadian rhythms. Unpublished PhD dissertation, Monash University, Victoria, Australia.

  36. Thomas, E. M. V., and Armstrong, S. M., Melatonin administration entrains female rat activity rhythms in constant darkness but not in constant light. Am. J. Physiol.255 (1988) R237-R242.

    CAS  PubMed  Google Scholar 

  37. Turek, F. W., Earnest, D. J., and Swann, J., Splitting of the circadian rhythm of activity in hamsters, in: Vertebrate Circadian Systems, p. 203–214. Eds J. Aschoff, S. Daan and G. Groos. Springer-Verlag, Berlin, Heidelberg 1982.

    Chapter  Google Scholar 

  38. Vaněćek, J., Pavlik, A., and Illnerová, H., Hypothalamic melatonin receptor sites revealed by autoradiography. Brain Res.435 (1987) 359–362.

    Article  PubMed  Google Scholar 

  39. Wainwright, S. D., Role of the pineal gland in the vertebrate master biological clock, in: The Pineal Gland, Vol. III. Extra-Reproductive Effects, p. 53–79. Ed. R. J. Reiter, CRC Press, Boca Raton, Florida 1982.

    Google Scholar 

  40. Weaver, D. R., Namboodiri, M. A. A., and Reppert, S. M., Iodinated melatonin mimics melatonin action and reveals discrete binding sites in fetal brain. FEBS228 (1988) 123–127.

    Article  CAS  Google Scholar 

  41. Wever, R. A., Characteristics of circadian rhythms in human function, in: Melatonin in Humans, p. 323–373. Eds R. J. Wurtman and F. Waldhauser, Springer-Verlag, Wien, New York 1986.

    Google Scholar 

  42. Zisapel, N., Nir, I., and Laudon, M., Circadian variations in melatonin-binding sites in discrete areas of the male rat brain. FEBS232 (1988) 172–176.

    Article  CAS  Google Scholar 

  43. Zisapel, N., Circadian rhythms in melatonin receptors in discrete areas of the rat brain: coincidence with timing of physiological responsiveness. Proc. 10th Intern. Congr. Photobiol. (1988) 42.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armstrong, S.M. Melatonin and circadian control in mammals. Experientia 45, 932–938 (1989). https://doi.org/10.1007/BF01953050

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01953050

Key words

Navigation