1932

Abstract

Human vision provides useful information about the shape and color of the objects around us. It works well in many, but not all, lighting conditions. Since the advent of human-made light sources, it has been important to understand how illumination affects vision quality, but this has been surprisingly difficult. The widespread introduction of solid-state light emitters has increased the urgency of this problem. Experts still debate how lighting can best enable high-quality vision—a key issue since about one-fifth of global electrical power production is used to make light. Photometry, the measurement of the visual quantity of light, is well established, yet significant uncertainties remain. Colorimetry, the measurement of color, has achieved good reproducibility, but researchers still struggle to understand how illumination can best enable high-quality color vision. Fortunately, in recent years, considerable progress has been made. Here, we summarize the current understanding and discuss key areas for future study.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-091718-015018
2019-09-15
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/vision/5/1/annurev-vision-091718-015018.html?itemId=/content/journals/10.1146/annurev-vision-091718-015018&mimeType=html&fmt=ahah

Literature Cited

  1. Adelson EH, Bergen JR. 1991. The plenoptic function and the elements of early vision. Computational Models of Visual Processing MS Landy, JA Movshon 3–20 Cambridge, MA: MIT Press
    [Google Scholar]
  2. Alfvin RL, Fairchild MD. 1997. Observer variability in metameric color matches using color reproduction media. Color Res. Appl. 22:174–88
    [Google Scholar]
  3. Am. Natl. Stand. Inst 2017. American national standard for electric lamps—specifications for the chromaticity of solid state lighting (SSL) products Natl. Stand. ANSI C78.377-2017 Natl. Electr. Manuf. Assoc Arlington, VA:
  4. Asano Y, Fairchild MD, Blondé L, Morvan P 2016. Color matching experiment for highlighting interobserver variability. Color Res. Appl. 41:530–39
    [Google Scholar]
  5. Beer DR, Anna D, Macleod DIA 2006. Ideal white can be yellowish or bluish, but not reddish or greenish. J. Vis. 6:6417
    [Google Scholar]
  6. Berson DM, Dunn FA, Takao M 2002. Phototransduction by retinal ganglion cells that set the circadian clock. Science 295:1070–73
    [Google Scholar]
  7. Bosten JM, Beer RD, MacLeod DIA 2015. What is white?. J. Vis. 15:165
    [Google Scholar]
  8. Brainard DH. 2015. Color and the cone mosaic. Annu. Rev. Vis. Sci. 1:519–46
    [Google Scholar]
  9. Brainard DH, Maloney LT. 2011. Surface color perception and equivalent illumination models. J. Vis. 11:1
    [Google Scholar]
  10. Brainard GC, Hanifin JP. 2002. Action spectrum for melatonin suppression: evidence for a novel circadian photoreceptor in the human eye. Biologic Effects of Light 2001 MF Holick 463–74 Boston, MA: Springer
    [Google Scholar]
  11. Brill MH, Süsstrunk S. 2008. Repairing gamut problems in CIECAM02: a progress report. Color Res. Appl. 33:424–26
    [Google Scholar]
  12. Brown LR. 2011. World on the Edge: How to Prevent Environmental and Economic Collapse New Brunswick, NJ: Earth Policy Inst.
  13. Bur. Int. Poids Mes 2014. SI Brochure: The International System of Units (SI) Sèvres, France: BIPM. , 8th ed..
  14. Chang A-M, Aeschbach D, Duffy JF, Czeisler CA 2015. Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness. PNAS 112:1232–37
    [Google Scholar]
  15. Chauhan T, Perales E, Xiao K, Hird E, Karatzas D, Wuerger S 2014. The achromatic locus: effect of navigation direction in color space. J. Vis. 14:125
    [Google Scholar]
  16. Choi K, Suk H-J. 2016. Assessment of white for displays under dark- and chromatic-adapted conditions. Opt. Express 24:28945–57
    [Google Scholar]
  17. CIE 1986. Colorimetry Rep. CIE15.2-1986 CIE: Vienna
  18. CIE 1989. Special metamerism index: change in observer Rep. CIE80-1989 CIE Vienna:
  19. CIE 1995. Method of measuring and specifying colour rendering properties of light sources Rep. CIE13.3-1995 CIE Vienna:
  20. CIE 2004. Colorimetry Rep. CIE15-2004 CIE Vienna:
  21. CIE 2005. Photometry—the CIE system of physical photometry Rep. ISO23539:2005(E)/CIES010/E:2004 CIE Vienna:
  22. CIE 2006. Fundamental chromaticity diagram with physiological axes—part 1 Rep. CIE 170-1:2006 CIE Vienna:
  23. CIE 2011. ILV: international lighting vocabulary Rep. Surv. CIE DIS 017/E:2011, CIE Cent. Bur Vienna:
  24. CIE 2015. Fundamental chromaticity diagram with physiological axes—part 2: spectral luminous efficiency functions and chromaticity diagrams Rep. CIE 170-2:2015 CIE Vienna:
  25. CIE 2017. Colour fidelity index for accurate scientific use Rep. CIE224:2017 CIE Vienna:
  26. Coblentz WW, Emerson WB. 1918. Relative Sensibility of the Average Eye to Light of Different Colors and Some Practical Applications to Radiation Problems Washington, DC: US Bull. Bur. Stand.
  27. Csuti P, Schanda J. 2008. Colour matching experiments with RGB-LEDs. Color Res. Appl. 33:108–12
    [Google Scholar]
  28. Csuti P, Schanda J. 2010. A better description of metameric experience of LED clusters. Light Eng 18:44–50
    [Google Scholar]
  29. David A. 2014. Color fidelity of light sources evaluated over large sets of reflectance samples. LEUKOS 10:59–75
    [Google Scholar]
  30. David A, Esposito T, Houser K, Royer M, Smet KA, Whitehead L 2019. A vector field color rendition model for characterizing color shifts and metameric mismatch. LEUKOS In press. https://doi.org/10.1080/15502724.2018.1554369
    [Crossref] [Google Scholar]
  31. David A, Fini PT, Houser KW, Ohno Y, Royer MP et al. 2015. Development of the IES method for evaluating the color rendition of light sources. Opt. Express 23:15888–906
    [Google Scholar]
  32. Davis W, Ohno Y. 2010. Color quality scale. Opt. Eng. 49:33602–16
    [Google Scholar]
  33. Dibner C, Schibler U, Albrecht U 2010. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu. Rev. Physiol. 72:517–49
    [Google Scholar]
  34. Dikel EE, Burne GJ, Veitch JA, Mancini S, Newsham GR 2014. Preferred chromaticity of color-tunable LED lighting. LEUKOS 10:101–15
    [Google Scholar]
  35. DiLaura DL 2011. The Lighting Handbook: Reference and Application New York: IES N. Am.
  36. Esposito T, Houser K. 2018. Models of colour quality over a wide range of spectral power distributions. Light. Res. Technol 51:331–52
    [Google Scholar]
  37. Fairchild MD. 2013. Color Appearance Models Chichester, UK: Wiley & Sons
  38. Farrell JE, Wandell BA. 2015. Image systems simulation. Handbook of Digital Imaging, Vol. 1 M Kriss 373–400 Chichester, UK: Wiley
    [Google Scholar]
  39. Fu C, Li C, Cui G, Luo MR, Hunt RWG, Pointer MR 2012. An investigation of colour appearance for unrelated colours under photopic and mesopic vision. Color Res. Appl. 37:238–54
    [Google Scholar]
  40. Gabel V, Maire M, Reichert CF, Chellappa SL, Schmidt C et al. 2013. Effects of artificial dawn and morning blue light on daytime cognitive performance, well-being, cortisol and melatonin levels. Chronobiol. Int. 30:988–97
    [Google Scholar]
  41. Gall D. 2004. Definition and measurement of circadian radiometric quantities. Proceedings of the CIE Symposium on Light Healing129–32 Vienna: CIE
    [Google Scholar]
  42. Gibson KS, Tyndall EPT. 1923. Visibility of radiant energy Sci. Pap., Bur. Stand Washington, DC:
  43. Gooley JJ, Chamberlain K, Smith KA, Khalsa SBS, Rajaratnam SMW et al. 2011. Exposure to room light before bedtime suppresses melatonin onset and shortens melatonin duration in humans. J. Clin. Endocrinol. Metab. 96:E463–72
    [Google Scholar]
  44. Gooley JJ, Rajaratnam SMW, Brainard GC, Kronauer RE, Czeisler CA, Lockley SW 2010. Spectral responses of the human circadian system depend on the irradiance and duration of exposure to light. Sci. Transl. Med. 2:31ra33
    [Google Scholar]
  45. Guild J. 1931. The colorimetric properties of the spectrum. Philos. Trans. R. Soc. A 230:149–87
    [Google Scholar]
  46. Hashimoto K, Yano T, Shimizu M, Nayatani Y 2007. New method for specifying color-rendering properties of light sources based on feeling of contrast. Color Res. Appl. 32:361–71
    [Google Scholar]
  47. Hattar S, Liao HW, Takao M, Berson DM, Yau KW 2002. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295:1065–70
    [Google Scholar]
  48. Helson H, Michels WC. 1948. The effect of chromatic adaptation on achromaticity. J. Opt. Soc. Am. A 38:1025–31
    [Google Scholar]
  49. Hernández-Andrés J, Lee RL, Romero J 1999. Calculating correlated color temperatures across the entire gamut of daylight and skylight chromaticities. Appl. Opt. 38:5703–9
    [Google Scholar]
  50. Honjyo K, Nonaka M. 1970. Perception of white in a 10° field. J. Opt. Soc. Am. A 60:1690–94
    [Google Scholar]
  51. Houser K, Mossman M, Smet K, Whitehead L 2016. Tutorial: color rendering and its applications in lighting. LEUKOS 12:7–26
    [Google Scholar]
  52. Houser KW, Wei M, David A, Krames MR 2014. Whiteness perception under LED illumination. LEUKOS 10:165–80
    [Google Scholar]
  53. Houser KW, Wei M, David A, Krames MR, Shen XS 2013. Review of measures for light-source color rendition and considerations for a two-measure system for characterizing color rendition. Opt. Express 21:10393–411
    [Google Scholar]
  54. Hunt RWG. 1987. A model of colour vision for predicting colour appearance in various viewing conditions. Color Res. Appl. 12:297–314
    [Google Scholar]
  55. Hurvich LM, Jameson D. 1951. A psychophysical study of white. I. Neutral adaptation. J. Opt. Soc. Am. A 41:521–27
    [Google Scholar]
  56. IEC 2017. Electromagnetic compatibility (EMC) part 3-3: limits Int. Stand. IEC 61000-3-3:2013+AMD1:2017, IEC Vienna:
  57. IES 2015. Method for evaluating light source color rendition Tech. Memo. IES-TM-30-15, IES N. Am New York:
  58. IES 2018. Method for evaluating light source color rendition Tech. Memo. IES-TM-30-18, IES N. Am New York:
  59. Jiang J, Wang Z, Luo MR, Melgosa M, Brill MH, Li C 2015. Optimum solution of the CIECAM02 yellow-blue and purple problems. Color Res. Appl. 40:491–503
    [Google Scholar]
  60. Jost S, Cauwerts C, Avouac P 2018. CIE 2017 color fidelity index Rf: a better index to predict perceived color difference?. J. Opt. Soc. Am. A 35:B202–13
    [Google Scholar]
  61. Judd DB. 1967. A flattery index for artificial illuminants. J. Illum. Eng. Soc. 62:593–98
    [Google Scholar]
  62. Kelly DH. 1984. Retinal inhomogeneity. I. Spatiotemporal contrast sensitivity. J. Opt. Soc. Am. A 1:107–13
    [Google Scholar]
  63. Krames MR, David AJF. 2016. Circadian-friendly LED light source US Patent 9:410,664
  64. Kuriki I. 2006. The loci of achromatic points in a real environment under various illuminant chromaticities. Vis. Res. 46:3055–66
    [Google Scholar]
  65. LeGates TA, Fernandez DC, Hattar S 2014. Light as a central modulator of circadian rhythms, sleep and affect. Nat. Rev. Neurosci. 15:443–54
    [Google Scholar]
  66. Levoy M, Hanrahan P. 1996. Light field rendering. Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques31–42 New York: ACM
    [Google Scholar]
  67. Li C, Cui G, Melgosa M, Ruan X, Zhang Y et al. 2016a. Accurate method for computing correlated color temperature. Opt. Express 24:14066–78
    [Google Scholar]
  68. Li C, Li Z, Wang Z, Xu Y, Luo MR et al. 2017. Comprehensive color solutions: CAM16, CAT16, and CAM16-UCS. Color Res. Appl. 42:703–18
    [Google Scholar]
  69. Li H, Luo MR, Liu XY, Wang BY, Liu HY 2016b. Evaluation of colour appearance in a real lit room. Light. Res. Technol. 48:412–32
    [Google Scholar]
  70. Liu XY, Li H, Luo MR 2015. Assessments of white perception in a real lit room. Proceedings of the 28th CIE Session, June 28–July 4196–201 Vienna: CIE
    [Google Scholar]
  71. Long DL, Fairchild MD. 2014. Modeling observer variability and metamerism failure in electronic color displays. J. Imaging Sci. Technol. 58:030402-1–20
    [Google Scholar]
  72. Lucas RJ, Peirson SN, Berson DM, Brown TM, Cooper HM et al. 2014. Measuring and using light in the melanopsin age. Trends Neurosci 37:1–9
    [Google Scholar]
  73. Luo MR, Cui G, Georgoula M 2015. Colour difference evaluation for white light sources. Light. Res. Technol. 47:360–69
    [Google Scholar]
  74. Luo MR, Cui G, Li C 2006. Uniform colour spaces based on CIECAM02 colour appearance model. Color Res. Appl. 31:320–30
    [Google Scholar]
  75. Luo MR, Hunt RWG. 1998. The structure of the CIE 1997 colour appearance model (CIECAM97s). Color Res. Appl. 23:138–46
    [Google Scholar]
  76. Luo MR, Pointer MR. 2018. CIE colour appearance models: a current perspective. Light. Res. Technol. 50:129–40
    [Google Scholar]
  77. MacAdam DL. 1943. Specification of small chromaticity differences. J. Opt. Soc. Am. 33:18–26
    [Google Scholar]
  78. Maloney LT, Brainard DH. 2010. Color and material perception: achievements and challenges. J. Vis. 10:919
    [Google Scholar]
  79. Masuda O, Nascimento SMC. 2013. Best lighting for naturalness and preference. J. Vis. 13:74
    [Google Scholar]
  80. McCamy CS. 1993. Correlated color temperature as an explicit function of chromaticity coordinates. Color Res. Appl. 17:142–44
    [Google Scholar]
  81. McDermott KC, Webster MA. 2012. Uniform color spaces and natural image statistics. J. Opt. Soc. Am. A 29:182–87
    [Google Scholar]
  82. Melgosa M. 2000. Testing CIELAB-based color-difference formulas. Color Res. Appl. 25:49–55
    [Google Scholar]
  83. Melgosa M, Quesada JJ, Hita E 1994. Uniformity of some recent color metrics tested with an accurate color-difference tolerance dataset. Appl. Opt. 33:8069–77
    [Google Scholar]
  84. Moroney N, Fairchild MD, Hunt RWG, Li C, Luo MR, Newman T 2002. The CIECAM02 color appearance model Paper presented at the 10th Color Imaging Conference Scottsdale, AZ: Nov. 12
  85. Naka KI, Rushton WAH. 1966. An attempt to analyse colour reception by electrophysiology. J. Physiol. 185:556–86
    [Google Scholar]
  86. Narendran N, Deng L, Freyssinier JP, Yu H, Gu Y et al. 2004. Developing color tolerance criteria for white LEDs ASSIST Rep., Light. Res. Cent., Rensselaer Polytech. Inst Troy, NY:
  87. Nimeroff I, Rosenblatt JR, Dannemiller MC 1962. Variability of spectral tristimulus values. J. Opt. Soc. Am. A 52:685–91
    [Google Scholar]
  88. North AD, Fairchild MD. 1993. Measuring color-matching functions. Part I. Color Res. Appl. 18:155–62
    [Google Scholar]
  89. Ohno Y. 2014. Practical use and calculation of CCT and Duv. LEUKOS 10:47–55
    [Google Scholar]
  90. Ohno Y, Blattner P. 2014. Chromaticity difference specifications for light sources CIE Tech. Note 001:2014 Vienna:
  91. Ohno Y, Fein M. 2013. Vision experiment on white light chromaticity for lighting: Duv levels perceived most natural Paper presented at CIE/USA-CNC/CIE Biennial Joint Meeting Davis, CA: Nov 7–8
  92. Ohno Y, Oh S. 2016. Vision experiment ii on white light chromaticity for lighting. Proceedings of CIE Lighting Quality and Energy Efficiency, Melbourne, March 3–5175–184 Vienna: CIE
    [Google Scholar]
  93. Panorgias A, Kulikowski JJ, Parry NRA, McKeefry DJ, Murray IJ 2012. Phases of daylight and the stability of color perception in the near peripheral human retina. J. Vis. 12:31
    [Google Scholar]
  94. Papamichael K, Siminovitch M, Veitch JA, Whitehead L 2015. High color rendering can enable better vision without requiring more power. LEUKOS 12:27–38
    [Google Scholar]
  95. Pearce B, Crichton S, Mackiewicz M, Finlayson GD, Hurlbert A 2014. Chromatic illumination discrimination ability reveals that human colour constancy is optimised for blue daylight illuminations. PLOS ONE 9:e87989
    [Google Scholar]
  96. Perz M, Baselmans R, Sekulovski D 2016. Perception of illumination whiteness. Proceedings of CIE Lighting Quality and Energy Efficiency, CIE X042:2016, Prague, Sept. 5–911–17 Vienna: CIE
    [Google Scholar]
  97. Perz M, Vogels I, Sekulovski D, Wang L, Tu Y, Heynderickx I 2015. Modeling the visibility of the stroboscopic effect occurring in temporally modulated light systems. Light. Res. Technol. 47:281–300
    [Google Scholar]
  98. Priest IG. 1921. The spectral distribution of energy required to evoke the gray sensation. J. Opt. Soc. Am. 5:205–9
    [Google Scholar]
  99. Rahman SA, St. Hilaire MA, Lockley SW. 2017. The effects of spectral tuning of evening ambient light on melatonin suppression, alertness and sleep. Physiol. Behav. 177:221–29
    [Google Scholar]
  100. Rea MS, Freyssinier JP. 2013. White lighting. Color Res. Appl. 38:82–92
    [Google Scholar]
  101. Rea MS, Freyssinier JP. 2014. White lighting: a provisional model for predicting perceived tint in “white” illumination. Color Res. Appl. 39:466–79
    [Google Scholar]
  102. Rea MS, Freyssinier-Nova JP. 2008. Color rendering: a tale of two metrics. Color Res. Appl. 33:192–202
    [Google Scholar]
  103. Rich DC, Jalijali J. 1995. Effects of observer metamerism in the determination of human color-matching functions. Color Res. Appl. 20:29–35
    [Google Scholar]
  104. Robertson AR. 1968. Computation of correlated color temperature and distribution temperature. J. Opt. Soc. Am. A 58:1528–35
    [Google Scholar]
  105. Robertson AR. 1977. The CIE 1976 color-difference formulae. Color Res. Appl. 2:7–11
    [Google Scholar]
  106. Royer M, Ballentine NH, Eslinger PJ, Houser K, Mistrick R et al. 2012. Light therapy for seniors in long term care. J. Am. Med. Dir. Assoc. 13:100–2
    [Google Scholar]
  107. Royer MP. 2018. What's next for LED color rendering? Presented at Lightfair 2018, US Dep. Energy Washington, DC: May 17
  108. Royer MP, Wilkerson A, Wei M 2017a. Human perceptions of colour rendition at different chromaticities. Light. Res. Technol. 50:965–94
    [Google Scholar]
  109. Royer MP, Wilkerson A, Wei M, Houser K, Davis R 2017b. Human perceptions of colour rendition vary with average fidelity, average gamut, and gamut shape. Light. Res. Technol. 49:966–91
    [Google Scholar]
  110. Sanders CL. 1959. Assessment of color rendition under an illuminant using color tolerances for natural objects. J. Illum. Eng. Soc. 54:640–46
    [Google Scholar]
  111. Sarkar A. 2011. Variability in color-matching functions Final Rep. R1-54 CIE Vienna:
  112. Sarkar A, Blondé L, Le Callet P, Autrusseau F, Morvan P, Stauder J 2010. Toward reducing observer metamerism in industrial applications: colorimetric observer categories and observer classification. Proceedings of the 18th Color Imaging Conference, San Antonio, TX, Nov. 8–12307–13 Springfield, VA: Soc. Imaging Sci. Technol.
    [Google Scholar]
  113. Schernhammer ES, Kroenke CH, Laden F, Hankinson SE 2006. Night work and risk of breast cancer. Epidemiology 17:108–11
    [Google Scholar]
  114. Smet K, Deconinck G, Hanselaer P 2014. Chromaticity of unique white in object mode. Opt. Express 22:25830–41
    [Google Scholar]
  115. Smet K, Ryckaert WR, Pointer MR, Deconinck G, Hanselaer P 2011a. Colour appearance rating of familiar real objects. Color Res. Appl. 36:192–200
    [Google Scholar]
  116. Smet K, Ryckaert WR, Pointer MR, Deconinck G, Hanselaer P 2011b. Correlation between color quality metric predictions and visual appreciation of light sources. Opt. Express 19:8151–66
    [Google Scholar]
  117. Smet K, Schanda J, Whitehead L, Luo R 2013. CRI2012: a proposal for updating the CIE colour rendering index. Light. Res. Technol. 45:689–709
    [Google Scholar]
  118. Smet KA, David A, Whitehead L 2016a. Why color space uniformity and sample set spectral uniformity are essential for color rendering measures. LEUKOS 12:39–50
    [Google Scholar]
  119. Smet KAG. 2018. Two neutral white illumination loci based on unique white rating and degree of chromatic adaptation. LEUKOS 14:55–67
    [Google Scholar]
  120. Smet KAG. 2019. Tutorial: the LuxPy Python toolbox for lighting and color science. LEUKOS In press. https://doi.org/10.1080/15502724.2018.1518717
    [Crossref] [Google Scholar]
  121. Smet KAG, Deconinck G, Hanselaer P 2015. Chromaticity of unique white in illumination mode. Opt. Express 23:12488–95
    [Google Scholar]
  122. Smet KAG, Hanselaer P. 2016. Memory and preferred colours and the colour rendition of white light sources. Light. Res. Technol. 48:393–411
    [Google Scholar]
  123. Smet KAG, Ryckaert WR, Pointer MR, Deconinck G, Hanselaer P 2012. A memory colour quality metric for white light sources. Energy Build 49:216–25
    [Google Scholar]
  124. Smet KAG, Webster MA, Whitehead LA 2016b. A simple principled approach for modeling and understanding uniform color metrics. J. Opt. Soc. Am. A 33:A319–31
    [Google Scholar]
  125. Smet KAG, Zhai Q, Luo MR, Hanselaer P 2017. Study of chromatic adaptation using memory color matches. Part II: colored illuminants. Opt. Express 25:8350–65
    [Google Scholar]
  126. Stevens RG. 2009. Light-at-night, circadian disruption and breast cancer: assessment of existing evidence. Int. J. Epidemiol. 38:963–70
    [Google Scholar]
  127. Stevens RG, Zhu Y. 2015. Electric light, particularly at night, disrupts human circadian rhythmicity: Is that a problem. ? Philos. Trans. R. Soc. B 370:20140120
    [Google Scholar]
  128. Stiles WS, Burch JM. 1959. N.P.L. colour-matching investigation: final report (1958). J. Mod. Opt. 6:1–26
    [Google Scholar]
  129. Stockman A, Sharpe LT. 1999. Cone spectral sensitivities and color matching. Color Vision: From Genes to Perception KR Gegenfurtner, LT Sharpe 53–89 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  130. Szabó F, Bodrogi P, Schanda J 2009. A colour harmony rendering index based on predictions of colour harmony impression. Light. Res. Technol. 41:165–82
    [Google Scholar]
  131. Thapan K, Arendt J, Skene DJ 2001. An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans. J. Physiol. 535:261–67
    [Google Scholar]
  132. Thornton WA. 1974. A validation of the color-preference index. J. Illum. Eng. Soc. 4:48–52
    [Google Scholar]
  133. Valberg A. 1971. A method for the precise determination of achromatic colours including white. Vis. Res. 11:157–60
    [Google Scholar]
  134. van der Burgt P, van Kemenade J 2010. About color rendition of light sources: the balance between simplicity and accuracy. Color Res. Appl. 35:85–93
    [Google Scholar]
  135. Walraven J, Werner JS. 1991. The invariance of unique white; a possible implication for normalizing cone action spectra. Vis. Res. 31:2185–93
    [Google Scholar]
  136. Wandell BA. 1995. Foundations of Vision Sunderland, MA: Sinauer
  137. Wang Y, Wei M. 2017. Preference among light sources with different Duv but similar colour rendition: a pilot study. Light. Res. Technol. 50:1013–23
    [Google Scholar]
  138. Webster MA. 2015. Visual adaptation. Annu. Rev. Vis. Sci. 1:547–67
    [Google Scholar]
  139. Wei M, Houser KW. 2016. What is the cause of apparent preference for sources with chromaticity below the blackbody locus?. LEUKOS 12:95–99
    [Google Scholar]
  140. Wei M, Houser K, David A, Krames M 2015. Perceptual responses to LED illumination with colour rendering indices of 85 and 97. Light. Res. Technol. 47:810–27
    [Google Scholar]
  141. Wei M, Houser KW, David A, Krames MR 2016a. Colour gamut size and shape influence colour preference. Light. Res. Technol. 49:810–27
    [Google Scholar]
  142. Wei ST, Luo MR, Xiao K, Pointer M 2016b. A comprehensive model of colour appearance for related and unrelated colours of varying size viewed under mesopic to photopic conditions. Color Res. Appl. 42:293–304
    [Google Scholar]
  143. Whitehead L. 2013. Interpretation concerns regarding white light. Color Res. Appl. 38:93–95
    [Google Scholar]
  144. Whitehead LA, Mossman MA. 2006. Jack O'Lanterns and integrating spheres: Halloween physics. Am. J. Phys. 74:537–41
    [Google Scholar]
  145. Whitehead LA, Mossman MA. 2012. A Monte Carlo method for assessing color rendering quality with possible application to color rendering standards. Color Res. Appl. 37:13–22
    [Google Scholar]
  146. Witzel C, Valkova H, Hansen T, Gegenfurtner KR 2011. Object knowledge modulates colour appearance. i-Perception 2:13–49
    [Google Scholar]
  147. Wright WD. 1929. A re-determination of the trichromatic coefficients of the spectral colours. Trans. Opt. Soc. 30:141
    [Google Scholar]
  148. Wu R-C, Wardman RH. 2007. Proposed modification to the CIECAM02 colour appearance model to include the simultaneous contrast effects. Color Res. Appl. 32:121–29
    [Google Scholar]
  149. Wyszecki G, Stiles WS. 2000. Color Science: Concepts and Methods, Quantitative Data and Formulas London: Wiley & Sons
  150. Zukauskas A, Vaicekauskas R, Ivanauskas F, Vaitkevicius H, Vitta P, Shur MS 2009. Statistical approach to color quality of solid-state lamps. IEEE J. Sel. Top. Quantum Electron. 15:1753–62
    [Google Scholar]
/content/journals/10.1146/annurev-vision-091718-015018
Loading
/content/journals/10.1146/annurev-vision-091718-015018
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error