American Journal of BioScience

| Peer-Reviewed |

Antibiogram, Biochemical Reactions and Genotyping Characterization of Biofield Treated Staphylococcus aureus

Received: 19 September 2015    Accepted: 30 September 2015    Published: 16 October 2015
Views:       Downloads:

Share This Article

Abstract

Staphylococcus aureus (S. aureus) is the key organism for food poisoning due to massive production of heat stable exotoxins. The current study was attempted to investigate the effect of Mr. Trivedi’s biofield treatment on S. aureus. S. aureus (ATCC 25923) was divided into two parts, Group (Gr.) I: control and Gr. II: treatment. After biofield treatment, Gr. II was further subdivided into two parts, Gr. IIA and Gr. IIB. Gr. IIA was analyzed on day 10, while Gr. IIB was stored and analyzed on day 159 after revival (Study I). The revived sample (Gr. IIB) were retreated on day 159 (Study II), and divided into three separate tubes. Tube 1 was analyzed on day 5, likewise, tube 2 and 3 were analyzed on day 10 and 15, respectively. All the experimental parameters were studied using automated MicroScan Walk-Away® system. The 16S rDNA sequencing was carried out in Gr. IIA sample to correlate the phylogenetic relationship of S. aureus with other bacterial species. The antimicrobial susceptibility and minimum inhibitory concentration showed significant alteration i.e. 92.86% and 90.00% respectively in treated cells of S. aureus as compared to control. The biochemical reactions also showed the significant (35.71%) alteration in treated sample with respect to control. The biotype number and microbial species were substantially changed in Gr. IIA (767177; Staphylococcus cohnii subsp. urealyticum) on day 10, while only the biotype numbers were changed in rest of the treated samples as compared to control (307016; S. aureus). The 16S rDNA analysis showed that the identified strain in this experiment was S. aureus (GenBank Accession No.: L37597) after biofield treatment. However, the nearest homolog genus-species was found as Staphylococcus simiae (GenBank Accession No.: DQ127902). These results suggested that biofield treatment has a significant impact on S. aureus in lyophilized as well as revived state.

DOI 10.11648/j.ajbio.20150306.13
Published in American Journal of BioScience (Volume 3, Issue 6, November 2015)
Page(s) 212-220
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Staphylococci, Staphylococcus aureus, Antimicrobial Sensitivity, Biofield Treatment, Biochemical Reaction, Biotype, 16S rDNA, Gram-Positive Bacteria

References
[1] Konuku S, Rajan MM, Muruhan S (2012) Morphological and biochemical characteristics and antibiotic resistance pattern of Staphylococcus aureus isolated from grapes. Int J Nut Pharmacol Neurol Dis 2: 70-73.
[2] Dubey A, Ghorui SK, Kashyap SK (2009) Differentiation of Staphylococcus aureus strains based on 16S-23S ribosomal RNA intergenic space polymorphism. Indian J Biotechnol 8: 276-279.
[3] Balaban N, Rasooly A (2000) Staphylococcal enterotoxins. Int J Food Microbiol 61: 1-10.
[4] Kwok AY, Su SC, Reynolds RP, Bay SJ, Av-Gay Y, et al. (1999) Species identification and phylogenetic relationships based on partial HSP60 gene sequences within the genus Staphylococcus. Int J Syst Bacteriol 49: 1181-1192.
[5] Poyart C, Quesne G, Boumaila C, Trieu-Cuot P (2001) Rapid and accurate species-level identification of coagulase-negative Staphylococci by using the sodA gene as a target. J Clin Microbiol 39: 4296-4301.
[6] Drancourt M, Raoult D (2002) rpoB gene sequence-based identification of Staphylococcus species. J Clin Microbiol 40: 1333-1338.
[7] Chakraborty SP, Mahapatra SK, Roy S (2011) Biochemical characters and antibiotic susceptibility of Staphylococcus aureus isolates. Asian Pac J Trop Biomed 1: 212-216.
[8] Koithan M (2009) Introducing complementary and alternative therapies. J Nurse Pract 5: 18-20.
[9] Burr HS (1957) Bibliography of Harold Saxton Burr. Yale J Biol Med 30: 163-167.
[10] Hammerschlag R, Jain S, Baldwin AL, Gronowicz G, Lutgendorf SK, et al. (2012) Biofield research: A roundtable discussion of scientific and methodological issues. J Altern Complement Med 18: 1081-1086.
[11] Movaffaghi Z, Farsi M (2009) Biofield therapies: Biophysical basis and biological regulations? Complement Ther Clin Pract 15: 35-37.
[12] Prakash S, Chowdhury AR, Gupta A (2015) Monitoring the human health by measuring the biofield "aura": An overview. IJAER 10: 27637-27641.
[13] Trivedi MK, Tallapragada RM (2008) A transcendental to changing metal powder characteristics. Met Powder Rep 63: 22-28, 31.
[14] Dabhade VV, Tallapragada RR, Trivedi MK (2009) Effect of external energy on atomic, crystalline and powder characteristics of antimony and bismuth powders. Bull Mater Sci 32: 471-479.
[15] Trivedi MK, Tallapragada RM (2009) Effect of super consciousness external energy on atomic, crystalline and powder characteristics of carbon allotrope powders. Mater Res Innov 13: 473-480.
[16] Sances F, Flora E, Patil S, Spence A, Shinde V (2013) Impact of biofield treatment on ginseng and organic b1lueberry yield. Agrivita J Agric Sci 35: 22-29.
[17] Lenssen AW (2013) Biofield and fungicide seed treatment influences on soybean productivity, seed quality and weed community. Agricultural Journal 83: 138-143.
[18] Trivedi MK, Patil S, Shettigar H, Bairwa K, Jana S (2015) Phenotypic and biotypic characterization of Klebsiella oxytoca: An impact of biofield treatment. J Microb Biochem Technol 7: 203-206.
[19] Trivedi MK, Patil S, Shettigar H, Gangwar M, Jana S (2015) An effect of biofield treatment on multidrug-resistant Burkholderia cepacia: A multihost pathogen. J Trop Dis 3: 167.
[20] Trivedi MK, Patil S, Shettigar H, Gangwar M, Jana S (2015) Antimicrobial sensitivity pattern of Pseudomonas fluorescens after biofield treatment. J Infect Dis Ther 3: 222.
[21] Patil SA, Nayak GB, Barve SS, Tembe RP, Khan RR (2012) Impact of biofield treatment on growth and anatomical characteristics of Pogostemon cablin (Benth.). Biotechnology 11: 154-162.
[22] Nayak G, Altekar N (2015) Effect of biofield treatment on plant growth and adaptation. J Environ Health Sci 1: 1-9.
[23] Fader RC, Weaver E, Fossett R, Toyras M, Vanderlaan J, et al. (2013) Multilaboratory study of the biomic automated well-reading instrument versus MicroScan WalkAway for reading MicroScan antimicrobial susceptibility and identification panels. J Clin Microbiol 51: 1548-1554.
[24] Toribio-Jimenez J, Moral BM, Echeverria SE, Pineda CO, Rodriguez-Barrera MA, et al. (2014) Biotype, antibiotype, genotype and toxin gene tsst-1 in Staphylococcus aureus isolated from cotija cheese in the state of Guerrero, Mexico. Afr J Microbiol Res 8: 2893-2897.
[25] Kumar S, Tamura K, Nei, M (2004) MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5: 150-163.
[26] Milazzo I, Blandino G, Caccamo F, Musumeci R, Nicoletti G, et al. (2003) Faropenem, a new oral penem: Antibacterial activity against selected anaerobic and fastidious periodontal isolates. J Antimicrob Chemother 51: 721-725.
[27] Ishii Y, Alba J, Maehara C, Murakami H, Matsumoto T, et al. (2006) Identification of biochemically atypical Staphylococcus aureus clinical isolates with three automated identification systems. J Med Microbiol 55: 387-392.
[28] Drancourt M, Bollet C, Carlioz A, Martelin R, Gayral JP, et al. (2000) 16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates. J Clin Microbiol 38: 3623-3630.
[29] Vandamme P, Pot B, Gillis M, de Vos P, Kersters K, et al. (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60: 407-438.
[30] Lindstrom E, Mild KH, Lundgren E (1998) Analysis of the T cell activation signaling pathway during ELF magnetic field exposure, p56lck and [Ca2+]i-measurements. Bioeletrochem Bioenerg 46: 129-137.
Cite This Article
  • APA Style

    Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Sambhu Charan Mondal, et al. (2015). Antibiogram, Biochemical Reactions and Genotyping Characterization of Biofield Treated Staphylococcus aureus. American Journal of BioScience, 3(6), 212-220. https://doi.org/10.11648/j.ajbio.20150306.13

    Copy | Download

    ACS Style

    Mahendra Kumar Trivedi; Alice Branton; Dahryn Trivedi; Gopal Nayak; Sambhu Charan Mondal, et al. Antibiogram, Biochemical Reactions and Genotyping Characterization of Biofield Treated Staphylococcus aureus. Am. J. BioScience 2015, 3(6), 212-220. doi: 10.11648/j.ajbio.20150306.13

    Copy | Download

    AMA Style

    Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Sambhu Charan Mondal, et al. Antibiogram, Biochemical Reactions and Genotyping Characterization of Biofield Treated Staphylococcus aureus. Am J BioScience. 2015;3(6):212-220. doi: 10.11648/j.ajbio.20150306.13

    Copy | Download

  • @article{10.11648/j.ajbio.20150306.13,
      author = {Mahendra Kumar Trivedi and Alice Branton and Dahryn Trivedi and Gopal Nayak and Sambhu Charan Mondal and Snehasis Jana},
      title = {Antibiogram, Biochemical Reactions and Genotyping Characterization of Biofield Treated Staphylococcus aureus},
      journal = {American Journal of BioScience},
      volume = {3},
      number = {6},
      pages = {212-220},
      doi = {10.11648/j.ajbio.20150306.13},
      url = {https://doi.org/10.11648/j.ajbio.20150306.13},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajbio.20150306.13},
      abstract = {Staphylococcus aureus (S. aureus) is the key organism for food poisoning due to massive production of heat stable exotoxins. The current study was attempted to investigate the effect of Mr. Trivedi’s biofield treatment on S. aureus. S. aureus (ATCC 25923) was divided into two parts, Group (Gr.) I: control and Gr. II: treatment. After biofield treatment, Gr. II was further subdivided into two parts, Gr. IIA and Gr. IIB. Gr. IIA was analyzed on day 10, while Gr. IIB was stored and analyzed on day 159 after revival (Study I). The revived sample (Gr. IIB) were retreated on day 159 (Study II), and divided into three separate tubes. Tube 1 was analyzed on day 5, likewise, tube 2 and 3 were analyzed on day 10 and 15, respectively. All the experimental parameters were studied using automated MicroScan Walk-Away® system. The 16S rDNA sequencing was carried out in Gr. IIA sample to correlate the phylogenetic relationship of S. aureus with other bacterial species. The antimicrobial susceptibility and minimum inhibitory concentration showed significant alteration i.e. 92.86% and 90.00% respectively in treated cells of S. aureus as compared to control. The biochemical reactions also showed the significant (35.71%) alteration in treated sample with respect to control. The biotype number and microbial species were substantially changed in Gr. IIA (767177; Staphylococcus cohnii subsp. urealyticum) on day 10, while only the biotype numbers were changed in rest of the treated samples as compared to control (307016; S. aureus). The 16S rDNA analysis showed that the identified strain in this experiment was S. aureus (GenBank Accession No.: L37597) after biofield treatment. However, the nearest homolog genus-species was found as Staphylococcus simiae (GenBank Accession No.: DQ127902). These results suggested that biofield treatment has a significant impact on S. aureus in lyophilized as well as revived state.},
     year = {2015}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Antibiogram, Biochemical Reactions and Genotyping Characterization of Biofield Treated Staphylococcus aureus
    AU  - Mahendra Kumar Trivedi
    AU  - Alice Branton
    AU  - Dahryn Trivedi
    AU  - Gopal Nayak
    AU  - Sambhu Charan Mondal
    AU  - Snehasis Jana
    Y1  - 2015/10/16
    PY  - 2015
    N1  - https://doi.org/10.11648/j.ajbio.20150306.13
    DO  - 10.11648/j.ajbio.20150306.13
    T2  - American Journal of BioScience
    JF  - American Journal of BioScience
    JO  - American Journal of BioScience
    SP  - 212
    EP  - 220
    PB  - Science Publishing Group
    SN  - 2330-0167
    UR  - https://doi.org/10.11648/j.ajbio.20150306.13
    AB  - Staphylococcus aureus (S. aureus) is the key organism for food poisoning due to massive production of heat stable exotoxins. The current study was attempted to investigate the effect of Mr. Trivedi’s biofield treatment on S. aureus. S. aureus (ATCC 25923) was divided into two parts, Group (Gr.) I: control and Gr. II: treatment. After biofield treatment, Gr. II was further subdivided into two parts, Gr. IIA and Gr. IIB. Gr. IIA was analyzed on day 10, while Gr. IIB was stored and analyzed on day 159 after revival (Study I). The revived sample (Gr. IIB) were retreated on day 159 (Study II), and divided into three separate tubes. Tube 1 was analyzed on day 5, likewise, tube 2 and 3 were analyzed on day 10 and 15, respectively. All the experimental parameters were studied using automated MicroScan Walk-Away® system. The 16S rDNA sequencing was carried out in Gr. IIA sample to correlate the phylogenetic relationship of S. aureus with other bacterial species. The antimicrobial susceptibility and minimum inhibitory concentration showed significant alteration i.e. 92.86% and 90.00% respectively in treated cells of S. aureus as compared to control. The biochemical reactions also showed the significant (35.71%) alteration in treated sample with respect to control. The biotype number and microbial species were substantially changed in Gr. IIA (767177; Staphylococcus cohnii subsp. urealyticum) on day 10, while only the biotype numbers were changed in rest of the treated samples as compared to control (307016; S. aureus). The 16S rDNA analysis showed that the identified strain in this experiment was S. aureus (GenBank Accession No.: L37597) after biofield treatment. However, the nearest homolog genus-species was found as Staphylococcus simiae (GenBank Accession No.: DQ127902). These results suggested that biofield treatment has a significant impact on S. aureus in lyophilized as well as revived state.
    VL  - 3
    IS  - 6
    ER  - 

    Copy | Download

Author Information
  • Trivedi Global Inc., Henderson, USA

  • Trivedi Global Inc., Henderson, USA

  • Trivedi Global Inc., Henderson, USA

  • Trivedi Global Inc., Henderson, USA

  • Trivedi Science Research Laboratory Pvt. Ltd., Hall-A, Chinar Mega Mall, Chinar Fortune City, Hoshangabad Rd., Bhopal, Madhya Pradesh, India

  • Trivedi Science Research Laboratory Pvt. Ltd., Hall-A, Chinar Mega Mall, Chinar Fortune City, Hoshangabad Rd., Bhopal, Madhya Pradesh, India

  • Sections