Skip to main content
Log in

Assessing the skill of all-season diverse Madden–Julian oscillation indices for the intraseasonal Amazon precipitation

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Madden–Julian Oscillation (MJO) impact on the Amazon intraseasonal precipitation assessed by different MJO indices is investigated through an analysis of composite events and observed case studies. The MJO indices diagnosing skill is described in detail using reanalysis, satellite, and gauge-based gridded rainfall data. Three types of existing MJO indices are considered: (1) OLR-based MJO (OMI index); (2) dynamically- or circulation-based MJO (VPM index); and (3) combined convectively- and dynamically-based MJO (Wheeler–Hendon RMM index). Our results suggest that, in the large-scale (i.e., around the global tropics), even in the regional domain, the MJO OLR-only index well-represent the dynamical and convective features associated with the intraseasonal variability. On the other hand, each index gives diverging results on rainfall characterization over the Amazon Basin (AB). For instance, the cumulative distribution of precipitation for each MJO phase and index depicts considerable differences in the main climatic regions of the AB, indicating a diverging intraseasonal representation for extreme rainfall values. In addition, when event-by-event is assessed, details as well as the identification of events themselves can differ among indices. This characteristic is particularly observed during extreme rainfall events in the AB. A significant percentage of MJO activity is detected only by the MJO OLR-based index. Because the large-scale zonal circulation dominates the dynamically-based indices (RMM and VPM), the MJO impact in these indices is not an appropriate measure of convective MJO activity. Since the convective component of the MJO is our primary objective, the results presented in this study show that the OLR-based MJO index is able to better account for the MJO impacts over the AB. The indices considered in this study are often used for monitoring and forecasting the MJO activity over South America. However, given the dissimilarity of the representation of precipitation in the AB, our findings also support the consideration of a regional index for monitoring and forecasting the MJO impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adames AF, Kim D (2016) The MJO as a dispersive, convectively coupled moisture wave: theory and observations. J Atmos Sci 73:913

    Google Scholar 

  • Alvarez MS, Vera CS, Kiladis GN, Liebmann B (2016) Influence of the Madden Julian oscillation on precipitation and surface air temperature in South America. Clim Dyn 46:245

    Google Scholar 

  • Ambrizzi T, Hoskins BJ (1997) Stationary Rossby-wave propagation in a baroclinic atmosphere. Q J R Meteorol Soc 123:919

    Google Scholar 

  • Barichivich J, Gloor E, Peylin P, Brienen RJW, Schongart J, Espinoza JC, Pattnayak KC (2018) Recent intensification of Amazon flooding extremes driven by strengthened Walker circulation. Sci Adv 4:aa8785

    Google Scholar 

  • Boers N, Rheinwalt A, Bookhagen B, Barbosa HMJ, Marwan N, Marengo J, Kurths J (2014) The South American rainfall dipole: A complex network analysis of extreme events. Geophysical Research Letters 41:7397

    Google Scholar 

  • Carvalho LMV, Jones C, Liebmann B (2002) Extreme precipitation events in southeastern South America and large-scale convective patterns in the South Atlantic convergence zone. J Clim 15:2377

    Google Scholar 

  • Carvalho LMV, Silva AE, Jones C et al (2011) Moisture transport and intraseasonal variability in the South America monsoon system. Clim Dyn 36:1865–1880. https://doi.org/10.1007/s00382-010-0806-2

    Article  Google Scholar 

  • Casarin DP, Kousky VE (1986) Anomalias de precipitação no sul do Brasil e variações na circulação atmosférica. Rev Bras Meteorol 2:83

    Google Scholar 

  • Cavalcanti IFA, Kousky VE (2009) Sistemas meteorológicos que afetam o tempo na América do Sul: frentes frias sobre o Brasil, Oficina de Textos, p 135–147

  • Chavez SP, Takahashi K (2017) Orographic rainfall hot spots in the Andes-Amazon transition according to the TRMM precipitation radar and in situ data. J Geophys Res Atmos 122:5870

    Google Scholar 

  • Cohen JCP, Silva Dias MAF, Nobre CA (1995) Environmental conditions associated with amazonian squall lines: a case study. Mon Weather Rev 123:3163

    Google Scholar 

  • Dee DP, Uppala SM et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteor Soc 137:553

    Google Scholar 

  • Duchon CE (1979) Lanczos filtering in one and two dimensions. J Appl Meteorol 18(8):1016–1022

    Google Scholar 

  • Espinoza JC, Marengo JA, Ronchail J, Molina J, Noriega L, Guyot JL (2014) The extreme 2014 flood in South-Western Amazon basin: the role of tropical-subtropical South Atlantic SST gradient. Environ. Res. Lett. 9:124007. https://doi.org/10.1088/1748-9326/9/12/124007

    Article  Google Scholar 

  • Espinoza JC, Chavez S, Ronchail J, Junquas C, Takahashi K, Lavado W (2015) Rainfall hotspots over the southern tropical Andes: spatial distribution, rainfall intensity, and relations with large-scale atmospheric circulation. Water Resour Res 51(5):3459–3475

    Google Scholar 

  • Espinoza JC, Lengaigne M, Ronchail J, Janicot S (2012) Large-scale circulation patterns and related rainfall in the Amazon Basin: a neuronal networks approach. Clim Dyn 38(1–2):121–140

    Google Scholar 

  • Espinoza JC, Ronchail J, Frappart F, Lavado W, Santini W, Guyot JL (2013) The major floods in the Amazonas River and tributaries (western Amazon Basin) during the 1970–2012 period: a focus on the 2012 Flood. J Hydrometeorol 14(3):1000–1008

    Google Scholar 

  • Espinoza JC, Ronchail J, Guyot JL, Cochonneau G, Naziano F, Lavado W, De Oliveira E, Pombosa R, Vauchel P (2009) Spatio-temporal rainfall variability in the Amazon basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador). Int J Climatol 29(11):1574–1594

    Google Scholar 

  • Espinoza JC, Ronchail J, Guyot JL, Junquas C, Vauchel P, Lavado W, Drapeau G, Pombosa R (2011) Climate variability and extreme drought in the upper Solimoes River (western Amazon Basin): understanding the exceptional 2010 drought. Geophys Res Lett 38(13):L13406. https://doi.org/10.1029/2011GL047862

    Article  Google Scholar 

  • Espinoza JC, Ronchail J, Marengo JA (2019) Segura H (2018) Contrasting North-South changes in Amazon wet-day and dry-day frequency and related atmospheric features (1981–2017). Clim Dyn 52:5413–5430. https://doi.org/10.1007/s00382-018-4462-2

    Article  Google Scholar 

  • Espinoza JC, Segura H, Ronchail J, Drapeau G, Gutierrez-Cori O (2016) Evolution of wet-day and dry-day frequency in the 905 western Amazon basin: relationship with atmospheric circulation and impacts on vegetation. Water Resour Res 52(11):8546–8560

    Google Scholar 

  • Figueroa S, Nobre C (1990) Precipitation distribution over central and western tropical South America. Climanalise 36–45:911

    Google Scholar 

  • Gottschalck J, Wheeler M, Weickmann K, Vitart F, Savage N, Lin H, Hendon H, Waliser D, Sperber K, Nakagawa M, Prestrelo C, Flatau M, Higgins W (2010) A framework for assessing operational Madden–Julian oscillation forecasts. Bull Am Meteorol Soc 91:1247

    Google Scholar 

  • Guimberteau M, Drapeau G, Ronchail J, Sultan B, Polcher J, Martinez J-M, Prigent C, Guyot J-L, Cochonneau G, Espinoza JC, Filizola N, Fraizy P, Lavado W, De Oliveira E, Pombosa R, Noriega L, Vauchel P (2012) Discharge simulation in the sub- basins of the Amazon using ORCHIDEE forced by new datasets. Hydrol Earth Syst Sci 16:911

    Google Scholar 

  • Gonzalez PLM, Vera CS (2014) Summer precipitation variability over South America on long and short intraseasonal timescales. Clim Dyn 43:1993

    Google Scholar 

  • Grimm AM (2003) The El Niño impact on the summer monsoon in Brazil: regional processes versus remote influences. J Clim 16:263–80

    Google Scholar 

  • Grimm AM (2011) Interannual climate variability in South America: impacts on seasonal precipitation, extreme events, and possible effects of climate change Stoch. Environ Res Risk A 25:537–54

    Google Scholar 

  • Huffman GJ, Bolvin DT, Nelkin EJ, Wolff DB, Adler RF, Gu G, Hong Y, Bow-man KP, Stocker EF (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8:38

    Google Scholar 

  • Jones C (2009) A homogeneous stochastic model of the Madden–Julian oscillation. J Clim 22:3270

    Google Scholar 

  • Jones C, Carvalho LMV (2002) Active and break phases in the South American monsoon system. J Clim 15:905

    Google Scholar 

  • Jones C, Carvalho LMV (2012) Spatial-intensity variations in extreme precipitation in the contiguous United States and the Madden–Julian oscillation. J Clim 25:4898

    Google Scholar 

  • Junquas C, Vera C, Li L, Le Treut H (2012) Summer precipitation variability over Southeastern South America in a global warming scenario. Clim Dyn 38:1867

    Google Scholar 

  • Junquas C, Takahashi K, Condom T, Espinoza JC, Chavez S, Sicart JE, Lebel T (2018) Understanding the influence of orography over the precipitation diurnal cycle and the associated atmospheric processes in the central Andes. Clim Dyn. https://doi.org/10.1007/s00382-017-3858-8

  • Kikuchi K, Wang B, Kajikawa Y (2012) Bimodal representation of the tropical intraseasonal oscillation. Clim Dyn 38(9–10):1989–2000

    Google Scholar 

  • Kiladis GN, Straub KH, Haertel PT (2005) Zonal and Vertical Structure of the Madden– Julian Oscillation. Journal of the Atmospheric Sciences 62:2790

    Google Scholar 

  • Kiladis GN, Dias J, Straub KH, Wheeler MC, Tulich SN, Kikuchi K, Weickmann KM, Ventrice MJ (2014) A comparison of OLR and circulation-based indices for tracking the MJO. Mon Weather Rev 142:1697

    Google Scholar 

  • Liebmann B, Kiladis GN, Marengo J, Ambrizzi T, Glick JD (1999) Submonthly convective variability over South America and the South Atlantic convergence zone. J Clim 12(7):1877–1891

    Google Scholar 

  • Liebmann B, Smith CA (1996) Description of a complete (interpolated) outgoing long-wave radiation dataset. Bull Am Meteorol Soc 77:1275–1277

    Google Scholar 

  • Livezey RE, Chen WY (1983) Statistical field significance and its determination by Monte Carlo Techniques. Mon. Wea. Rev. 111:46

    Google Scholar 

  • Madden RA, Julian PR (1971) Detection of a 40–50 day oscillation in the Zonal Wind in the Tropical Pacific. J Atmos Sci 28(5):702–708

    Google Scholar 

  • Madden RA, Julian PR (1972) Description of global-scale circulation cells in the tropics with a 40–50 day period. J Atmos Sci 29(6):1109–1123

    Google Scholar 

  • Madden RA, Julian PR (1994) Observations of the 40–50-day tropical oscillation—review. Mon Weather Rev 122(5):814–837

    Google Scholar 

  • Marengo JA (1992) Interannual variability of surface climate in the Amazon basin. Int J Climatol 12(8):853–863

    Google Scholar 

  • Marengo JA (2004) Interdecadal variability and trends of rainfall across the Amazon basin. Theor Appl Climatol 78:79–96. https://doi.org/10.1007/s00704-004-0045-8

    Article  Google Scholar 

  • Marengo JA, Tomasella J, Soares W, Alves LM, Nobre CA (2010) Extreme climatic events in the Amazon basin: climatological and hydrological context of previous floods. Theor. Appl. Climatol. 85:1–13

    Google Scholar 

  • Marengo JA, Alves LM, Soares WR, Rodriguez DA, Camargo H, Riveros MP, Pablo AD (2013) Two contrasting severe seasonal extremes in tropical South America in 2012: Flood in amazonia and drought in northeast Brazil. J Clim 26(22):9137–9154

    Google Scholar 

  • Marengo JA, Espinoza JC (2016) Extreme seasonal droughts and floods in Amazonia: causes, trends and impacts. Int J Climatol 36(3):1033–1050

    Google Scholar 

  • Marengo JA, Nobre CA, Tomasella J, Oyama MD, Sampaio de Oliveira G, de Oliveira R, Camargo H, Alves LM, Brown IF (2008) The drought of Amazonia in 2005. J Clim 21(3):495–516

    Google Scholar 

  • Marengo JA, Tomasella J, Alves LM, Soares WR, Rodriguez DA (2011) The drought of 2010 in the context of historical droughts in the Amazon region. Geophys Res Lett 38:L12703. https://doi.org/10.1029/2011GL047436

    Article  Google Scholar 

  • Marengo JA et al (2012) Recent developments on the South American monsoon system. Int J Climatol 32:1–21

    Google Scholar 

  • Mayta VC, Ambrizzi T, Espinoza JC, Silva Dias PL (2019) The role of the Madden–Julian oscillation on the Amazon Basin intraseasonal rainfall variability. Int J Climatol 39(1):343–360

    Google Scholar 

  • Muñoz ÁG, Goddard L, Robertson AW, Kushnir Y, Baethgen W (2015) Cross-time scale interactions and rainfall extreme events in southeastern South America for the Austral Summer. Part I: potential predictors. J Clim 28(19):7894–7913

    Google Scholar 

  • Nogués-Paegle J, Mo KC (1997) Alternating wet and dry conditions over South America during Summer. Mon Weather Rev 125(2):279–291

    Google Scholar 

  • Paegle JN, Mo KC (2002) Linkages between summer rainfall variability over South America and sea surface temperature anomalies. J Clim 15:1389–1407

    Google Scholar 

  • Rao VB, Hada K (1990) Characteristics of rainfall over Brazil: annual variations and connections with the Southern Oscillation. TheorAppl Climatol 42:81

    Google Scholar 

  • Reboita MS, Alonso GM, Porfírio RR, Tércio A (2010) Regimes de precipitação na América do Sul: uma revisão bibliográfica. Rev Bras Meteorol 25:185

    Google Scholar 

  • Rehbein A, Dutra LMM, Ambrizzi T, da Rocha RP, Reboita MS, da Silva GAM, Gozzo LF, Tomaziello ACN, Campos JLPS, Mayta VRC, Crespo NM, Bueno PG, Aliaga Nestares VJ, Machado LT, De Jesus EM, Pampuch LA, Custodio MS, Carpenedo CB (2018) Severe weather events over southeastern Brazil during the 2016 dry season. Adv Meteorol 2018:1–15

    Google Scholar 

  • Robertson AW, Mechoso CR (1998) Interannual and decadal cycles in river flows of southeastern South America. J Clim 11:2570

    Google Scholar 

  • Ronchail J, Cochonneau G, Molinier M, Guyot J-L, De Miranda CAG, Guimarães V, de Oliveira E (2002) Interannual rainfall variability in the Amazon basin and sea-surface temperatures in the equatorial Pacific and the tropical Atlantic Oceans. Int J Climatol 22:1663

    Google Scholar 

  • Ronchail J, Guyot JL, Espinoza JC, Fraizy P, Cochonnieau G, de Oliveira E, Filizola N, Ordoñez J (2006) Impact of the Amazon tributaries on flooding in Óbidos. IAHS Publ 308:220–225

    Google Scholar 

  • Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53

    Google Scholar 

  • Santos EB, Lucio PS, Silva CMS (2015) Precipitation regionalization of the Brazilian Amazon. Atmos Sci Lett 16:185

    Google Scholar 

  • Satyamurty P, da Costa CPW, Manzi AO (2013a) Moisture source for the Amazon Basin: a study of contrasting years. Theor Appl Climatol 111:195

    Google Scholar 

  • Satyamurty P, da Costa CPW, Manzi AO, Candido LA (2013b) A quick look at the 2012 record flood in the Amazon basin. Geophys Res Lett 40:1396–1401

    Google Scholar 

  • Shimizu MH, Ambrizzi T, Liebmann B (2017) Extreme precipitation events and their relationship with ENSO and MJO phases over northern South America. Int J Climatol 37:2977

    Google Scholar 

  • Silva Dias MAF (1987) Sistemas de mesoescala e previsaõ de tempo a curto prazo. Rev Bras Meteorol 2:133–150

    Google Scholar 

  • Straub KH (2013) MJO initiation in the real-time multivariate MJO Index. J Clim 26:1130–1151

    Google Scholar 

  • Valadão CEA, Carvalho LMV, Lucio PS, Chaves RR (2017) Impacts of the Madden–Julian oscillation on intraseasonal precipitation over Northeast Brazil. Int J Climatol 37(4):1859–1884

    Google Scholar 

  • Ventrice MJ, Wheeler MC, Hendon HH, Schreck CJ, Thorncroft CD, Kiladis GN (2013) A modified multivariate Madden–Julian oscillation index using velocity potential. Mon Weather Rev 141(12):4197–4210

    Google Scholar 

  • Vera C, Higgins W, Amador J, Ambrizzi T, Garreaud R, Gochis D, Gutzler D, Lettenmaier D, Marengo J, Mechoso CR, Nogués-Paegle J, Dias PLS, Zhang C (2006) Toward a unified view of the American monsoon systems. J Clim 19(20):4977–5000

    Google Scholar 

  • Vera CS, Alvarez MS, Gonzalez PLM, Liebmann B, Kiladis GN (2018) Seasonal cycle of precipitation variability in South America on intraseasonal timescales. Clim Dyn 51(5–6):1991–2001

    Google Scholar 

  • Waliser D (2009) MJO simulation diagnostics. J Clim 22(11):3006–3030

    Google Scholar 

  • Wang H, Fu R (2002) Cross-equatorial flow and seasonal cycle of precipitation over South America. J Clim 15(13):1591–1608

    Google Scholar 

  • Wang XY, Li X, Zhu J, Tanajura CAS (2018a) The strengthening of Amazonian precipitation during the wet season driven by tropical sea surface temperature forcing. Environ Res Lett 13(9):094,015

    Google Scholar 

  • Wang S, Ma D, Sobel AH, Tippett MK (2018b) Propagation characteristics of BSISO indices. Geophys Res Lett 45:9934–9943

    Google Scholar 

  • Wang S, Sobel AH, Tippett MK, Vitart F (2019) Prediction and predictability of tropical intraseasonal convection: seasonal dependence and the Maritime Continent prediction barrier. Clim Dyn 52:6015

    Google Scholar 

  • Wheeler MC, Hendon HH (2004) An all-season real-time multivariate MJO Index: development of an index for monitoring and prediction. Mon Weather Rev 132(8):1917–1932

    Google Scholar 

  • Wilks D (2011) Statistical methods in the atmospheric sciences, 3rd edn. Elsevier Academic Press, Amsterdam, Boston

    Google Scholar 

  • Zhang C (2005) Madden–Julian Oscillation. Rev Geophys 43(2):RG2003

    Google Scholar 

  • Zhou J, Lau KM (1998) Does a Monsoon climate exist over South America? J Clim 11(5):1020–1040

    Google Scholar 

  • Zhou J, Lau KM (2001) Principal modes of interannual and decadal variability of summer rainfall over South America. Int J Climatol 21(13):1623–1644

    Google Scholar 

Download references

Acknowledgements

This research was supported by CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnologico) and the National Science Foundation under Grant AGS-1841559. Interpolated OLR and ERA-Interim Reanalysis data are provided by the NOAA/ESRL. JCE is supported of the French AMANECER-MOPGA project funded by ANR and IRD (ref. ANR-18-MPGA-0008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor C. Mayta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1479 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayta, V.C., Silva, N.P., Ambrizzi, T. et al. Assessing the skill of all-season diverse Madden–Julian oscillation indices for the intraseasonal Amazon precipitation. Clim Dyn 54, 3729–3749 (2020). https://doi.org/10.1007/s00382-020-05202-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-020-05202-9

Keywords

Navigation