Skip to main content
Log in

Buoyancy Effects in the Turbulence Kinetic Energy Budget and Reynolds Stress Budget for a Katabatic Jet over a Steep Alpine Slope

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Katabatic winds are very frequent but poorly understood or simulated over steep slopes. This study focuses on a katabatic jet above a steep alpine slope. We assess the buoyancy terms in both the turbulence kinetic energy (TKE) and the Reynolds shear-stress budget equations. We specifically focus on the contribution of the slope-normal and along-slope turbulent sensible heat fluxes to these terms. Four levels of measurements below and above the maximum wind-speed height enable analysis of the buoyancy effect along the vertical profile as follow: (i) buoyancy tends to destroy TKE, as expected in stable conditions, and the turbulent momentum flux in the inner-layer region of the jet below the maximum wind-speed height \(z_j\); (ii) results also suggest buoyancy contributes to the production of TKE in the outer-layer shear region of the jet (well above \(z_j\)) while consumption of the turbulent momentum flux is observed in the same region; (iii) In the region around the maximum wind speed where mechanical shear production is marginal, buoyancy tends to destroy TKE and our results suggest it tends to increase the momentum flux. The present study also provides an analytical condition for the limit between production and consumption of the turbulent momentum flux due to buoyancy as a function of the slope angle, similar to the condition already proposed for TKE. We reintroduce the stress Richardson number, which is the equivalent of the flux Richardson number for the Reynolds shear-stress budget. We point out that the flux Richardson number and the stress Richardson number are complementary stability parameters for characterizing the katabatic flow apart from the region around the maximum wind-speed height.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Axelsen SL, van Dop H (2009a) Large-eddy simulation of katabatic winds. Part 1: comparison with observations. Acta Geophys 57(4):803–836

    Google Scholar 

  • Axelsen SL, van Dop H (2009b) Large-eddy simulation of katabatic winds. Part 2: sensitivity study and comparison with analytical models. Acta Geophys 57(4):837–856

    Google Scholar 

  • Blein S (2016) Observation and modeling of stable atmospheric boundary layer in complex topography: turbulent processes in katabatic flow. PhD thesis, Université Grenoble Alpes (in French)

  • Boussinesq J (1877) Essai sur la théorie des eaux courantes. C R l’Acad Sci 87:1–680

    Google Scholar 

  • Bradshaw P (1969) The analogy between streamline curvature and buoyancy in turbulent shear flow. J Fluid Mech 36(1):177–191

    Google Scholar 

  • Brugger P, Katul GG, De Roo F, Kröniger K, Rotenberg E, Rohatyn S, Mauder M (2018) Scalewise anisotropy of the Reynolds stress tensor in the atmospheric surface layer and canopy sublayer. In: EGU general assembly conference abstracts, vol 20, p 8754

  • Brun C (2017) Large-eddy simulation of a katabatic jet along a convexly curved slope. Part 2: evidence of Görtler vortices. J Geophys Res Atmos 122(10):5190–5210

    Google Scholar 

  • Brun C, Blein S, Chollet J (2017) Large-eddy simulation of a katabatic jet along a convexly curved slope. Part 1: statistical results. J Atmos Sci 74(12):4047–4073

    Google Scholar 

  • Burkholder BA, Fedorovich E, Shapiro A (2011) Evaluating subgrid-scale models for large-eddy simulation of turbulent katabatic flow. In: Quality and reliability of large-eddy simulations II. Springer, Berlin, pp 149–160

  • Denby B (1999) Second-order modelling of turbulence in katabatic flows. Boundary-Layer Meteorol 92(1):65–98

    Google Scholar 

  • Denby B, Smeets C (2000) Derivation of turbulent flux profiles and roughness lengths from katabatic flow dynamics. J Appl Meteorol 39(9):1601–1612

    Google Scholar 

  • Eriksson J, Karlsson R, Persson J (1998) An experimental study of a two-dimensional plane turbulent wall jet. Exp Fluids 25(1):50–60

    Google Scholar 

  • Fedorovich E, Shapiro A (2009) Structure of numerically simulated katabatic and anabatic flows along steep slopes. Acta Geophys 57(4):981–1010

    Google Scholar 

  • Giometto M, Katul G, Fang J, Parlange M (2017) Direct numerical simulation of turbulent slope flows up to Grashof number \(Gr= 2.1\times 10^{11}\). J Fluid Mech 829:589–620

    Google Scholar 

  • Grachev AA, Leo LS, Di Sabatino S, Fernando HJS, Pardyjak ER, Fairall CW (2016) Structure of turbulence in katabatic flows below and above the wind-speed maximum. Boundary-Layer Meteorol 159(3):469–494. https://doi.org/10.1007/s10546-015-0034-8

    Article  Google Scholar 

  • Grisogono B, Oerlemans J (2001) Katabatic flow: analytic solution for gradually varying eddy diffusivities. J Atmos Sci 58(21):3349–3354

    Google Scholar 

  • Grisogono B, Kraljević L, Jeričević A (2007) The low-level katabatic jet height versus Monin–Obukhov height. Q J R Meteorol Soc 133(629):2133–2136

    Google Scholar 

  • Horst T, Doran J (1988) The turbulence structure of nocturnal slope flow. J Atmos Sci 45(4):605–616

    Google Scholar 

  • Howell J, Mahrt L (1997) Multiresolution flux decomposition. Boundary-Layer Meteorol 83(1):117–137

    Google Scholar 

  • Irwin HPA (1973) Measurements in a self-preserving plane wall jet in a positive pressure gradient. J Fluid Mech 61(1):33–63

    Google Scholar 

  • Jensen DD, Nadeau DF, Hoch SW, Pardyjak ER (2017) The evolution and sensitivity of katabatic flow dynamics to external influences through the evening transition. Q J R Meteorol Soc 143(702):423–438

    Google Scholar 

  • Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, New York

    Google Scholar 

  • Klipp C (2018) Turbulent friction velocity calculated from the Reynolds stress tensor. J Atmos Sci 75(4):1029–1043

    Google Scholar 

  • Krug D, Holzner M, Lüthi B, Wolf M, Kinzelbach W, Tsinober A (2013) Experimental study of entrainment and interface dynamics in a gravity current. Exp Fluids 54(5):1530

    Google Scholar 

  • Krug D, Holzner M, Marusic I, van Reeuwijk M (2017) Fractal scaling of the turbulence interface in gravity currents. J Fluid Mech 820:303–324

    Google Scholar 

  • Largeron Y (2010) Dynamique de la couche limite atmosphérique stable en relief complexe. Application aux épisodes de pollution particulaire des vallées alpines. PhD thesis, Université de Grenoble

  • Largeron Y, Staquet C (2016) Persistent inversion dynamics and wintertime PM10 air pollution in alpine valleys. Atmos Environ 135:92–108

    Google Scholar 

  • Litt M, Sicart JE, Helgason WD, Wagnon P (2015) Turbulence characteristics in the atmospheric surface layer for different wind regimes over the tropical Zongo glacier (Bolivia, \(16^{\circ }\) s). Boundary-Layer Meteorol 154(3):471–495

    Google Scholar 

  • Łobocki L (2017) Turbulent mechanical energy budget in stably stratified baroclinic flows over sloping terrain. Boundary-Layer Meteorol 164(3):353–365

    Google Scholar 

  • Low PS (1990) Katabatic winds in the lower Tamar valley. Tasmania. Il Nuovo Cimento C 13(6):981–994. https://doi.org/10.1007/BF02514786

  • Lumley JL (1979) Computational modeling of turbulent flows. In: Advances in applied mechanics, vol 18. Elsevier, London, pp 123–176

  • McNider RT (1982) A note on velocity fluctuations in drainage flows. J Atmos Sci 39(7):1658–1660

    Google Scholar 

  • Moncrieff J, Clement R, Finnigan J, Meyers T (2004) Averaging, detrending, and filtering of eddy covariance time series. In: Handbook of micrometeorology. Springer, London, pp 7–31

  • Monti P, Fernando H, Princevac M, Chan W, Kowalewski T, Pardyjak E (2002) Observations of flow and turbulence in the nocturnal boundary layer over a slope. J Atmos Sci 59(17):2513–2534

    Google Scholar 

  • Nadeau D, Pardyjak E, Higgins C, Huwald H, Parlange M (2013a) Flow during the evening transition over steep alpine slopes. Q J R Meteorol Soc 139(672):607–624

    Google Scholar 

  • Nadeau D, Pardyjak E, Higgins C, Parlange M (2013b) Similarity scaling over a steep alpine slope. Boundary-Layer Meteorol 147(3):401–419

    Google Scholar 

  • Nieuwstadt F (1984) Some aspects of the turbulent stable boundary layer. In: Boundary layer structure. Springer, London, pp 31–55

  • Oldroyd HJ, Katul G, Pardyjak ER, Parlange MB (2014) Momentum balance of katabatic flow on steep slopes covered with short vegetation. Geophys Res Lett 41(13):4761–4768

    Google Scholar 

  • Oldroyd H, Pardyjak E, Higgins C, Parlange M (2016a) Buoyant turbulent kinetic energy production in steep-slope katabatic flow. Boundary-Layer Meteorol 161(3):405–416

    Google Scholar 

  • Oldroyd H, Pardyjak E, Huwald H, Parlange M (2016b) Adapting tilt corrections and the governing flow equations for steep, fully three-dimensional, mountainous terrain. Boundary-Layer Meteorol 159(3):539–565

    Google Scholar 

  • Parmhed O, Oerlemans J, Grisogono B (2004) Describing surface fluxes in katabatic flow on Breidamerkurjökull, Iceland. Q J R Meteorol Soc 130(598):1137–1151

    Google Scholar 

  • Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge

    Google Scholar 

  • Poulos G, Zhong S (2008) An observational history of small-scale katabatic winds in mid-latitudes. Geogr Compass 2(6):1798–1821

    Google Scholar 

  • Prandtl L (1942) Führer durch die strömungslehre. F Vieweg & Sohn, Braunschweig

    Google Scholar 

  • Skyllingstad ED (2003) Large-eddy simulation of katabatic flows. Boundary-Layer Meteorol 106(2):217–243

    Google Scholar 

  • Smeets C, Duynkerke P, Vugts H (1998) Turbulence characteristics of the stable boundary layer over a mid-latitude glacier. Part 1: a combination of katabatic and large-scale forcing. Boundary-Layer Meteorol 87(1):117–145

    Google Scholar 

  • Smith CM, Porté-Agel F (2014) An intercomparison of subgrid models for large-eddy simulation of katabatic flows. Q J R Meteorol Soc 140(681):1294–1303

    Google Scholar 

  • Smith CM, Skyllingstad ED (2005) Numerical simulation of katabatic flow with changing slope angle. Mon Weather Rev 133(11):3065–3080

    Google Scholar 

  • Stiperski I, Calaf M (2018) Dependence of near-surface similarity scaling on the anisotropy of atmospheric turbulence. Q J R Meteorol Soc 144(712A):641–657. https://doi.org/10.1002/qj.3224

    Article  Google Scholar 

  • Stiperski I, Rotach MW (2016) On the measurement of turbulence over complex mountainous terrain. Boundary-Layer Meteorol 159(1):97–121

    Google Scholar 

  • Stiperski I, Holtslag AA, Lehner M, Hoch SW, Whiteman CD (2020) On the turbulence structure of deep katabatic flows on a gentle mesoscale slope. Q J R Meteorol Soc 146:1–26

    Google Scholar 

  • Stull R (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Berlin

    Google Scholar 

  • Sun J (2007) Tilt corrections over complex terrain and their implication for \(\text{ CO}_2\) transport. Boundary-Layer Meteorol 124(2):143–159

    Google Scholar 

  • Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atmos Ocean Technol 14(3):512–526

    Google Scholar 

  • Whiteman CD (2000) Mountain meteorology: fundamentals and applications. Oxford University Press, Oxford

    Google Scholar 

  • Wyngaard J (2010) Turbulence in the atmosphere. Cambridge University Press, Cambridge

    Google Scholar 

  • Wyngaard J, Coté O, Izumi Y (1971) Local free convection, similarity, and the budgets of shear stress and heat flux. J Atmos Sci 28(7):1171–1182

    Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant from Labex OSUG@2020 (Investissements d’avenir—ANR10 LABX56). The in-situ measurements were performed in the framework of the LEFE/IDAO program with financial support provided by the French National Institute of Earth Sciences and Astronomy (INSU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudine Charrondière.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charrondière, C., Brun, C., Sicart, JE. et al. Buoyancy Effects in the Turbulence Kinetic Energy Budget and Reynolds Stress Budget for a Katabatic Jet over a Steep Alpine Slope. Boundary-Layer Meteorol 177, 97–122 (2020). https://doi.org/10.1007/s10546-020-00549-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-020-00549-2

Keywords

Navigation