Skip to main content
Log in

Characterizing the Gas Permeability of Natural and Synthetic Materials

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The objective of this article is to propose an experimental method to compare the gas permeability of all the different materials used as gas barrier, such as compacted clay liners or geomembranes. This method is based on the falling pressure experiment, allowing the determination of a single coefficient whatever the material tested. This coefficient is the time constant τ, which is obtained by analytical solutions of the simplified equations describing the transport of gas through the material. The domain of validity is specified for porous media, thanks to a numerical solution of the complete equations system. Two applications are presented, showing the applicability of the method on compacted clay liners and on high density polyethylene geomembranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aminabhavi T.M., Naik H.G.: Chemical compatibility testing of geomembranes. Sorption/desorption, diffusion, permeation and swelling phenomena. Geotext. Geomembr 16, 333–354 (1998). doi:10.1016/S0266-1144(98)00017-X

    Article  Google Scholar 

  • ASTM D1434: Standard Test Method for Determining Gas Permeability Characteristics of Plastic Film and Sheeting. Pennsylvania, USA (1998, reapproved 2003)

  • ASTM E96: Standard Test Method for Water Vapor Transmission of Materials. Pennsylvania, USA

  • Aubertin M., Aachib M., Authier K.: Evaluation of diffusive gas flux through covers with a GCL. Geotext. Geomembr. 18(2–4), 215–233 (2000). doi:10.1016/S0266-1144(99)00028-X

    Article  Google Scholar 

  • Baehr A.L., Hult M.F.: Evaluation of unsaturated sone air permeability through pneumatic tests. Water Resour. Res. 27(10), 2605–2617 (1991). doi:10.1029/91WR01655

    Article  Google Scholar 

  • Barral, C., Oxarango, L., Pierson, P., Djeran-Maigre, I., Didier, G.: Measurement of gas leakage through landfill cap covers. In: Geo-Environmental Engineering 2007, Grenoble, France (2007)

  • Barroso M., Pierson P., Lopes L.G.: A non destructive method for testing non flexible dual geomembrane seams using gas permeation. Geosynth. Int. 13(1), 15–22 (2006). doi:10.1680/gein.2006.13.1.15

    Article  Google Scholar 

  • Bouazza A., Vangpaisal T.: An apparatus to measure gas permeability of geosynthetic clay liners. Geotext. Geomembr. 21, 85–101 (2003). doi:10.1016/S0266-1144(02)00058-4

    Article  Google Scholar 

  • Brusseau M.L.: Transport of organic chemicals by gas advection in structured or heterogeneous porous media: development of a model and application to column experiments. Water Resour. Res. 27(2), 3189–3199 (1991). doi:10.1029/91WR02195

    Article  Google Scholar 

  • Calogovic V.: Gas permeability measurement of porous materials (concrete) by time-variable pressure difference method. Cem. Concr. Res. 25(5), 1054–1062 (1995). doi:10.1016/0008-8846(95)00100-Q

    Article  Google Scholar 

  • Claisse P.A., Ganjian E., Adham T.A.: A vacuum-air permeability test for in situ assessment of cover concrete. Cem. Concr. Res. 33, 47–53 (2003). doi:10.1016/S0008-8846(02)00912-2

    Article  Google Scholar 

  • Cosse, R.: Basics of Reservoir Engineering: Oil and Gas Field Development Techniques, pp. 44–46. Institut Français du Pétrole Publications, Edition Technip (1996)

  • Crank J.: The Mathematics of Diffusion, 2edn. Clarendon, Oxford (1975)

    Google Scholar 

  • Didier G., Bouazza A., Cazaux D.: Gas permeability of geosynthetic clay liners. Geotext. Geomembr. 18, 235–250 (2000). doi:10.1016/S0266-1144(99)00029-1

    Article  Google Scholar 

  • Dullien F.A.L.: Porous Media—Fluid Transport and Pore Structure. Academic Press, New York (1979)

    Google Scholar 

  • Eischens G., Swanson A.: Proposed standard test method for measurement of pneumatic permeability of partially saturated porous materials by flowing air. Geotech. Test. J. 16(2), 232–238 (1996)

    Google Scholar 

  • Encyclopedia of Polymer Science and Technology: Plastics, Resins, Rubbers, Fibbers. Interscience Publishers, New York, USA (1964)

  • Figg J.W.: Methods of measuring the air and water permeability of concrete. Mag. Concr. Res. 25(85), 213–219 (1973)

    Google Scholar 

  • Gallé C., Daian J.F.: Gas permeability of unsaturated cement-based materials: application of a multi-scale network model. Mag. Concr. Res. 52(4), 251–263 (2000)

    Article  Google Scholar 

  • Lambert, S.: Etude de la perméabilité aux gaz des géomembranes. Master of Sciences Thesis, Lirigm-Université Joseph Fourier, Grenoble-France (1994)

  • Li H., Jiao J.J., Luk M.: A falling-pressure method for measuring air permeability of asphalt in laboratory. J. Hydrol. (Amst.) 286, 69–77 (2004). doi:10.1016/j.jhydrol.2003.09.013

    Article  Google Scholar 

  • Loosveldt H., Lafhaj Z., Skoczylas F.: Experimental study of gas and liquid permeability of a mortar. Cem. Concr. Res. 32, 1357–1363 (2002). doi:10.1016/S0008-8846(02)00793-7

    Article  Google Scholar 

  • Matrecon, Inc.: Lining of Waste Containment and Other Impoundment Facilities, 190 pp, USEPA, Report EPA/600/2-88/052, Cincinnati, Ohio, USA (1988)

  • McBean, E.A., Rovers, F.A., Farquhar, G.J.: Solid Waste Landfill Engineering and Design, 521 pp. Prentice-Hall PTR, Englewood Cliffs, NJ (1995)

  • Pierson P., Barroso M.C.P.: A pouch test for characterizing gas permeability of geomembranes. Geosynth. Int. 6(4), 345–372 (2002)

    Google Scholar 

  • Rogers C.E.: Permeation of gases and vapours in polymers. Chapter 2. In: Comyn, J. (eds) Polymer Permeability., pp. 11–73. Elsevier applied science publisher, London (1985)

    Google Scholar 

  • Rowe, R.K., Quigley, R.M., Booker, J.R.: Clayey Barrier Systems for Waste Disposal Facilities. E and FN Spon, Chapman et Hall, London (1995)

  • Samingam A.S., Leong E.C., Rahardjo H.: A flexible wall permeameter for measurements of water and air coefficients of permeability of residual soils. Can. Geotech. J. 40, 559–574 (2003). doi:10.1139/t03-015

    Article  Google Scholar 

  • Sangam H.P., Rowe R.K.: Migration of dilute aqueous organic pollutants through HDPE geomembranes. Geotext. Geomembr. 19, 329–357 (2001). doi:10.1016/S0266-1144(01)00013-9

    Article  Google Scholar 

  • Selvadurai A.P.S., Carnaffan P.: A transient pressure pulse method for the measurement of the permeability of a cement grout. Can. J. Civ. Eng. 24, 489–502 (1997). doi:10.1139/cjce-24-3-489

    Article  Google Scholar 

  • Shan H.Y., Yao J.T.: Measurement of air permeability of geosynthetic clay liners. Geotext. Geomembr. 18, 251–261 (2000). doi:10.1016/S0266-1144(99)00030-8

    Article  Google Scholar 

  • Springer D.S., Loaiciga H.A., Cullen S.J., Everett L.G.: Air permeability of porous materials under controlled laboratory conditions. Ground Water 36(4), 558–565 (1998). doi:10.1111/j.1745-6584.1998.tb02829.x

    Article  Google Scholar 

  • Vangpaisal T., Bouazza A.: Gas permeability of partially hydrated geosynthetic clay liners. J. Geotech. Geoenviron. Eng., ASCE 130(5), 93–102 (2004)

    Article  Google Scholar 

  • Whitaker S.: The Method of Volume Averaging. Kluwer Academic Press, Dordrecht (1999)

    Google Scholar 

  • Yssorche M.P., Bigas J.P., Ollivier J.P.: Mesure de la perméabilité à l’air des bétons au moyen d’un perméamètre à charge variable. Mater. Struct. 28, 401–405 (1995). doi:10.1007/BF02473075

    Article  Google Scholar 

  • Yu, L.L.: Study of air flow through porous media, 114 pp. MS Thesis, Department of civil Engineering University of Connecticut, Storrs, USA (1985)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Pierson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barral, C., Oxarango, L. & Pierson, P. Characterizing the Gas Permeability of Natural and Synthetic Materials. Transp Porous Med 81, 277–293 (2010). https://doi.org/10.1007/s11242-009-9398-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-009-9398-x

Keywords

Navigation