Skip to main content

Advertisement

Log in

Contribution of the Dusty Gas Model to Permeability/Diffusion Tests on Partially Saturated Clay Rocks

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Gas transfer experiments on claystone and numerical simulations have been conducted to enhance the knowledge of gas transport in nuclear waste repositories in the Callovo-Oxfordian clay formation in Bure, France. Laboratory Gas transfer experiments were performed with a specific device dedicated to very low permeability measurement (10−23 to 10−20 m2). Experiments were performed on both dry and close to saturation claystone. The Dusty Gas Model, based on multi-component gas transfer equations with Knudsen diffusion, was used to describe the experimental results. The parameters obtained are the effective permeability, the Knudsen diffusion (Klinkenberg effect) and molecular diffusion coefficients and the porosity accessible to gas. Numerical simulations were carried with various boundary conditions and for different gases (helium vs hydrogen) and were compared with experiments to test the reliability of the model parameters and to better understand the mechanisms involved in clays close to saturation. The numerical simulation fitted the experimental data well whereas simpler models cannot describe the complexity of the Knudsen/Klinkenberg effects. Permeabilities lie between 10−22 and 10−20 m2. Claystones close to saturation have an accessible porosity to gas transfer that is lower than 0.1–1% of the porosity. Analysis of the Klinkenberg effect suggests that this accessible pore network should be made of 50–200 nm diameter pores. It represents pore networks accessible at capillary pressure lower than 4 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

b k :

Klinkenberg coefficient, Pa

c i :

Concentration of species i, mol/m3

\({D^{\rm e}_{i,M}}\) :

Effective Knudsen diffusion coefficient of species i, m2/s

\({D^{\rm e}_{i, j}}\) :

Effective molecular diffusion coefficient of species i with j, m2/s

\({\frac{D_{{\rm H}_2,N_2}}{D_{{\rm He},N_2}}}\) :

Diffusivity ratio hydrogen/helium

\({D^{\rm e}_{\rm app}}\) :

Apparent effective diffusion coefficient, m2/s

d :

Mean diameter of the porous media, m

e :

Sample length, m

k :

Permeability, m2

M :

Molecular weight, kg/mol

N D :

Diffusive flux, mol/m2/s

N μ :

Viscous flux, mol/m2/s

N T :

Total flux, mol/m2/s

P c :

Capillary pressure, MPa

P 0 :

Reference pressure, MPa

R :

Gas constant, J/K/mol

RH:

Relative humidity

s():

Confidence interval

S g :

Part of porosity accessible to gas transfer

S l :

Saturation to liquid obtained on the sample weight

T :

Temperature, K

P :

Pressure, Pa

x i :

Molar fraction of species i

λ m :

Mean free path, m

μ :

Dynamic viscosity, Pa s

\({\phi}\) :

Porosity

σ :

Superficial tension water/gas, N/m

τ :

Tortuosity

\({{\nabla}}\) :

Gradient operator

\({\nabla \cdot}\) :

Divergence operator

app:

Apparent

d :

Downstream

g :

Gas

u :

Upstream

1:

Permeant gas (hydrogen or helium)

2:

Vector gas (nitrogen)

M :

Porous medium

:

Effective permeability

References

  • Abbas A., Carcasses M., Ollivier J.P.: Gas permeability of concrete in relation to its degree of saturation. Mater. Struct. 32(215), 3–8 (1999)

    Article  Google Scholar 

  • AbuElShar W., Abriola L.M.: Experimental assessment of gas transport mechanisms in natural porous media: parameter evaluation. Water Resour. Res. 33(4), 505–516 (1997)

    Article  Google Scholar 

  • ANDRA, Dossier 2005—Referentiel du site Meuse/Haute-Marne. ANDRA, Report n° C.RP.ADS.04.0022., ANDRA, Paris, France (2005)

  • Billotte J., Yang D., Su K.: Experimental study on gas permeability of mudstones. Phys. Chem. Earth 33, 231–236 (2007)

    Google Scholar 

  • Binning P.J., Postma D., Russell T.F., Wesselingh J.A., Boulin P.F.: Advective and diffusive contributions to reactive gas transport during pyrite oxidation in the unsaturated zone. Water Resour. Res. 43, W02414 (2007). doi:10.1029/2005WR004474

    Article  Google Scholar 

  • Bonin B., Colin M., Dutfoy A.: Pressure building during the early stages of gas production in a radioactive waste repository. J. Nucl. Mater. 281(1), 1–14 (2000)

    Article  Google Scholar 

  • Boulin P.F., Angulo-Jaramillo R., Daian J.-F., Talandier J., Berne P.: Experiments to estimate gas intrusion in Callovo-Oxfordian argillite. Phys. Chem. Earth 33(1), 1474–7065 (2008)

    Google Scholar 

  • Brace W.F., Walsh J.B., Frangos W.T.: Permeability of granite under high pressure. J. Geophys. Res. 73(6), 2225–2236 (1968)

    Article  Google Scholar 

  • COMSOL AB, COMSOL Multiphysics User’s Guide, version 3.5a., 624 pp, COMSOL AB ed., Grenoble, France (2008)

  • Escoffier S., Homand F., Giraud A., Hoteit N., Su K.: Under stress permeability determination of the Meuse/Haute-Marne mudstone. Eng. Geol. 81(3), 329–340 (2005)

    Article  Google Scholar 

  • Estes R.K., Fulton P.F.: Gas slippage and permeability measurements. Trans. Am. Inst. Min. Metall. Eng. 207(12), 338–342 (1956)

    Google Scholar 

  • Fen C.-S., Abriola L.M.: A comparison of mathematical model formulations for organic vapor transport in porous media. Adv. Water Resour. 27(10), 1005–1016 (2004)

    Article  Google Scholar 

  • Flaconneche B., Martin J., Klopffer M.H.: Methodes de mesure des coefficients de transport de gaz dans les polymeres [Transport properties of gases in polymers: experimental methods]. Oil Gas Sci. Technol. 56, 245–259 (2001)

    Article  Google Scholar 

  • Freeman, C.M., Moridis, G.J., Blasingame, T.A.: A numerical study of microscale flow behavior in tight gas and shale gas reservoir systems. Transp. Porous Med. (2011). doi:10.1007/s11242-011-9761-6

  • Gaucher E., Robelin C., Matray J.M., Negrel G., Gros Y., Heitz J.F., Vinsot A., Rebours H., Cassagnabere A., Bouchet A.: ANDRA underground research laboratory: interpretation of the mineralogical and geochemical data acquired in the CallovianOxfordian formation by investigative drilling. Phys. Chem. Earth 29(1), 55–77 (2004)

    Article  Google Scholar 

  • Hagymassy J. Jr, Brunauer S., Mikhail R.Sh.: Pore structure analysis by water vapor adsorption. J. Colloid Interface Sci. 29(3), 485–491 (1968)

    Article  Google Scholar 

  • Heid, J.G., McMahon, J.J., Nielson, R.F., Yuster, S.T.: Study of the Permeability of Rocks to Homogeneous Fluids. API Drilling and Production Practice, New York, pp. 230–244 (1950)

  • Hejmanek V., Olocova O., Schneider P.: Gas permeation in porous solids, two measurements modes. Chem. Eng. Commun. 190(1), 48–54 (2003)

    Article  Google Scholar 

  • Hsieh P.A., Tracy J.V., Neuzil C.E., Bredehoeft J.D., Silliman S.E.: A transient laboratory method for determination of the hydraulic properties of ‘tight’ rocks. J. Rock Mech. Min. Sci. & Geomech. 18, 245–252 (1981)

    Article  Google Scholar 

  • Horseman, S.T., Higgo, J.J.W., Alexander, J., Harrington, J.F.: Water, gas and solute movement through argillaceous media. Report for the NEA Working Group on Measurement and Physical Understanding of Groundwater Flow through Argillaceous Media (“Clay Club”), a Sub-group of the NEA Coordination Group on Site Evaluation and Design of Experiments for Radioactive Waste Disposal (SEDE), NEA/OECD Report CC-96/1, OECD, Paris, France (1996)

  • Hou K., Fowles M., Hugues R.: Effective diffusivity measurements on porous catalyst pellets at elevated temperature and pressure. Trans. IChemE. Part A 77, 55–61 (1999)

    Article  Google Scholar 

  • Hoxha, D., Auvray, C.: Resultats des essais sur echantillons pour le developpement des modeles rheologiques HM et THM des argiles, 237 pp, Rapport final ANDRA C RP 0.ENG 03.0380/D, Paris, France (2005)

  • Huang T.-C., Yang F.J.F., Huang C.-J., Kuo C.-H.: Measurements of diffusion coefficients by the method of gas chromatography. J. Chromatogr. A 70(1), 13–24 (1972)

    Article  Google Scholar 

  • Jannot, Y., Lasseux, D., Delottier, L., Hamon, G.: A simultaneous determination of permeability and Klinkenberg coefficient from an unsteady state pulse decay experiment, International Symposium of the SCA Proceedings, pp. 1631–1640, SCA, CA, USA (2008)

  • Kast W., Hohenthanner C.-R.: Mass transfer within the gas phase of porous media. Int. J. Heat Mass Transf. 43, 807–823 (2000)

    Article  Google Scholar 

  • Klinkenberg, L.-J.: The Permeability of Porous Media to Liquids and Gas. API Drilling and Production Practice, New York, pp. 200–213 (1941)

  • Krishna R., Wesselingh J.A.: The Maxwell Stefan approach to mass transfer. Chem. Eng. Sci. 52(6), 861–911 (1997)

    Article  Google Scholar 

  • Li, K., Horne, R.N.: Gas slippage in two-phase flow and the effect of temperature, SPE Western Regional Meeting Bakersfield proceeding, S.o.P.E. Inc. (Editor), CA, USA (2001)

  • Mason, E.A., Malinauskas, A.P.: Gas Transport in Porous Media; The Dusty-Gas Model. Chem. Eng. Monogr., vol. 17. Elsevier, New York, USA (1983)

  • Pham Q.T, Malinsky L., Nguyen Minh D., Vales F., Gharbi H.: Effect of drying and argillite samples. Phys. Chem. Earth 32(8–14), 646–655 (2007)

    Google Scholar 

  • Present R.D.: Kinetic Theory of Gases. McGraw-Hill, New York (1958)

    Google Scholar 

  • Rebour V., Billiotte J., Deveughele M., Jambon A., Le Guen C.: Molecular diffusion in water-saturated rocks: a new experimental method. J. Contam. Hydrol. 28(1–2), 71–93 (1997)

    Article  Google Scholar 

  • Reinecke S.A., Sleep B.E.: Knudsen diffusion, gas permeability, and water content in an unconsolidated porous medium. Water Resour. Res. 38(12), 1280 (2002)

    Article  Google Scholar 

  • Sampath K., Keighin C.W.: Factors affecting gas slippage in tight sandstones of cretaceous age in the Uinta Basin. J. Pet. Tech. 34(11), 2715–2720 (1982)

    Google Scholar 

  • Senger, R., Enachescu, C., Doe, T., Distinguin, M., Delay, J., Frieg, B.: Design and analysis of a gas threshold pressure test in low permeability clay formation at ANDRA’s underground research laboratory, Bure, Paper Presented in TOUGH Symposium 2006, Lawrence Berkeley National Laboratory, Berkeley, CA, May 15–17, 2006

  • Sercombe J., Vidal R., Galle C., Adenot F.: Experimental study of gas diffusion in cement paste. Cem. Concr. Res. 37(4), 570–588 (2007)

    Article  Google Scholar 

  • Soukup K., Schneider P., Solcova O.: Comparison of Wicke-Kallenbach and Graham’s diffusion cells for obtaining transport characteristics of porous solids. Chem. Eng. Sci. 63(4), 1003–1011 (2008)

    Article  Google Scholar 

  • Spiegel M.R.: Theorie et Applications de la Statistique. McGraw-Hill, New York (1972)

    Google Scholar 

  • Thomas S., Schafer R., Caro J., Seidel-Morgenstern A.: Investigation of mass transfer though inorganic membranes with several layers. Catal. Today 67(1–3), 205–216 (2001)

    Article  Google Scholar 

  • Thorstenson D.C., Pollock D.W.: Gas-transport in unsaturated zones—multicomponent systems and the adequacy of Fick laws. Water Resour. Res. 25(3), 477–507 (1989)

    Article  Google Scholar 

  • Veldsink J.W., Versteeg G.F., Van Swaaij W.P.M.: An experimental study of diffusion and convection of multicomponent gases through catalytic and non catalytic membranes. J. Membr. Sci. 92, 275–291 (1994)

    Article  Google Scholar 

  • Volckaert, G., Ortiz, L., De Canniére, P., Put, M., Horseman, S.T., Harrington, J.F., Fioravante, V., Impey, M.: MEGAS-modelling and experiments on gas migration in repository host rocks. Final Report, European Commission, EUR 16235 EN (1995)

  • Webb S.W.: Gas-phase diffusion in porous media—evaluation of an advective–dispersive formulation and the dusty-gas model for binary mixtures. J. Porous Med. 1(2), 187–199 (1998)

    Google Scholar 

  • Webb S.W., Pruess K.: The use of Fick’s law for modeling trace gas diffusion in porous media. Transp. Porous Med. 51, 327–341 (2003)

    Article  Google Scholar 

  • Wilke R.C.: Diffusional properties of multicomponent gases. Chem. Eng. Prog. 46, 95–104 (1950)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. F. Boulin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boulin, P.F., Angulo-Jaramillo, R., Talandier, J. et al. Contribution of the Dusty Gas Model to Permeability/Diffusion Tests on Partially Saturated Clay Rocks. Transp Porous Med 93, 609–634 (2012). https://doi.org/10.1007/s11242-012-9972-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-012-9972-5

Keywords

Navigation