Skip to main content

Advertisement

Log in

Hydrogeochemical and nitrate isotopic evolution of a semiarid mountainous basin aquifer of glacial-fluvial and paleolacustrine origin (Lake Titicaca, Bolivia): the effects of natural processes and anthropogenic activities

Evolution hydrogéochimique et isotopique du nitrate dans un aquifère de montagne semiaride d’origine fluvio-glaciaire et paléolacustre (lac Titicaca, Bolivie): effets des processus naturels et des activités anthropiques

Evolución hidrogeoquímica e isotópica de nitratos en un acuífero, de cuenca montañosa semiárida, de origen glacial-fluvial y paleolacustre (Lago Titicaca, Bolivia): efecto de los procesos naturales y las actividades antropogénicas.

玻利维亚的喀喀湖冰川-河流和古湖泊起源的半干旱山区盆地含水层水文地球化学和硝酸盐同位素演化: 自然过程和人为活动的影响

Evolução hidrogeoquímica e isotópica do nitrato em um aquífero semiárido da bacia montanhosa de origem glacial-fluvial e paleolacustrina (Lago Titicaca, Bolívia): efeitos de processos naturais e atividades antropogênicas

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

A hydrogeochemical and stable isotopic (\({\updelta }^{15}{\mathrm{N}}_{{\mathrm{NO}}_{3}}\) and \({\updelta }^{18}{\mathrm{O}}_{{\mathrm{NO}}_{3}}\)) multitracer approach was combined with previous geological and hydrogeological knowledge in a groundwater-dominated basin, located within the semiarid region of the Bolivian Altiplano (SE of Lake Titicaca). Major natural processes and anthropogenic impacts controlling water chemistry and isotopic compositions of groundwater were identified and corresponding aquifer impacted zones determined. The main natural processes are, by following water flowlines, (1) silicate weathering in the piedmont subsystem (~4,600–3,910 m asl, Ca(Mg)-HCO3 facies), (2) Na-Ca exchange within glacial-fluvial deposits overlying paleolacustrine deposits (~3,910 to 3,860 m asl, Na-HCO3 facies), and (3) evaporite dissolution in the confined zone of the lacustrine plain (~3,860–3,810 m asl, Na-Cl-SO4 facies). The highest contributions of anthropogenic nitrate in groundwater have been observed at 3,960–3,860 m asl in the piedmont subsystem and were isotopically associated with leaching from areas influenced by manure piles, synthetic N fertilizers, and sewage collector pipes. In this subsystem, natural water–rock interactions could be deciphered with minimal anthropogenic impact, allowing nitrate sources to be clearly identified. Denitrification, occurring in the topographic lows of the piedmont subsystem, was identified as the main natural attenuation process. The multitracer approach provided a consistent understanding of the major processes that take place along the groundwater flow system and confirmed the significant role of anthropogenic nitrate. This aquifer system thus represents an ideal model of the region’s hydrochemical evolution along the gravity-driven flow caused by natural water–rock interaction processes and the influence of anthropogenic contamination.

Résumé

Des approches hydrogéochimiques et multitraceurs d’isotopes stables (\({\delta }^{15}{\mathrm{N}}_{{\mathrm{NO}}_{3}}\) et \({\delta }^{18}{\mathrm{O}}_{{\mathrm{NO}}_{3}}\)) ont été combinées aux connaissances géologiques et hydrogéologiques antérieures dans un bassin à dominante eau souterraine localisé dans une région semiaride de l’Altiplano Bolivien (SE du lac Titicaca). Des processus naturels et impacts anthropiques contrôlant la chimie et la composition isotopique des eaux souterraines ont été identifiés et la zone d’aquifère impactée a été déterminée. Les processus naturels sont, en suivant les lignes de flux, (1) lessivage des silicates du sous-système du piedmont (~4,600–3,910 m asl, faciès Ca(Mg)-HCO3), (2) échange Ca-Na dans les dépôts fluvio-glaciaires recouvrant les dépôts paléolacutres (~3,910–3,860 m asl, faciès Na-HCO3) et, (3) dissolution des évaporites dans la zone confinée de la plaine lacustre (~3,860–3,810 m asl, faciès Na-Cl-SO4). Les plus fortes contributions de nitrate anthropique aux eaux souterraines ont été observées de 3,960–3,860 m asl dans le sous-système piedmont et sont isotopiquement associées au lessivage d’une aire influencée par des amas de fumier, des fertilisants azotés synthétiques et des collecteurs d’eau usée. Dans ce sous-système, les interactions naturelles eau-roche peuvent être comprises du fait d’un impact anthropique minimal, permettant une claire identification des sources de nitrate. La dénitrification, effective dans les parties basses du sous-système piedmont, a été identifiée comme le processus d’atténuation naturelle dominant. L’approche multitraceurs apporte une compréhension des processus principaux qui ont lieu le long des flux souterrains et confirme le rôle significatif du nitrate d’origine anthropique. Le système aquifère représente le modèle idéal de l’évolution hydrochimique régionale le long du flux gravitaire due aux processus d’interaction eau-roche et de l’influence de la contamination d’origine anthropique.

Resumen

Un enfoque de multitrazadores hidrogeoquímicos e isotópicos (\({\delta }^{15}{\mathrm{N}}_{{\mathrm{NO}}_{3}}\) y \({\delta }^{18}{\mathrm{O}}_{{\mathrm{NO}}_{3}}\)) fueron combinados con conocimientos previos, geológicos e hidrogeológicos, en una cuenca dominada por aguas subterráneas, localizada dentro de la región semi-árida del Altiplano Boliviano (SE del Lago Titicaca). Se identificaron los principales procesos naturales e impactos antropogénicos que controlan la química y las composiciones isotópicas de las aguas subterráneas y se determinaron las correspondientes zonas impactadas del acuífero. Siguiendo las líneas de flujo, los principales procesos naturales son, (1) meteorización de silicatos en el subsistema piedemonte (~4,600–3,910 m snm, facies Ca (Mg)-HCO3), (2) intercambio de Na-Ca dentro de los depósitos glaciales-fluviales que sobreyacen a los depósitos paleolacustres (~3,910–3,860 m snm, facies Na-HCO3), y (3) disolución de evaporitas en la zona confinada de la llanura lacustre (~3,860–3,810 m snm, facies Na-Cl-SO4). Las contribuciones más elevadas de nitrato antropogénico en las aguas subterráneas se han observado entre los 3,960–3,860 m snm en el subsistema piedemonte, y se asociaron isotópicamente con la lixiviación de áreas influidas por pilas de estiércol, fertilizantes sintéticos de N, y aguas residuales de tuberías colectoras. En este subsistema, las interacciones naturales agua-roca podrían interpretarse con un impacto antropogénico mínimo, permitiendo identificar claramente las fuentes de nitrato. La desnitrificación, que ocurre en los bajos topográficos del subsistema piedemonte, fue identificada como uno de los principales procesos de atenuación natural. El enfoque de multitrazadores proporcionó una comprensión consistente de los principales procesos que ocurren a lo largo del sistema de flujos subterráneos y confirmó el rol importante del nitrato antropogénico. Este sistema acuífero representa por tanto un modelo ideal de la evolución hidroquímica de la región, a lo largo de un sistema de flujo por gravedad, causado por procesos naturales de interacción agua-roca y la influencia de la contaminación antropogénica.

摘要

在喀喀湖东南部的玻利维亚高原, 将水文地球化学和稳定同位素 (\({\delta }^{15}{\mathrm{N}}_{{\mathrm{NO}}_{3}}\)\({\delta }^{18}{\mathrm{O}}_{{\mathrm{NO}}_{3}}\)) 多示踪方法与已有的地质和水文地质知识相结合。识别了控制地下水的水化学和同位素组成的主要自然过程和人为影响, 并确定了相应的含水层影响区。主要的自然过程是, 通过水流线, (1) 山麓子系统中的硅酸盐风化 (~4,600–3,910 m asl, Ca(Mg)-HCO3 相), (2) 上覆冰川-河流沉积物中的古湖相沉积物Na-Ca 交换 (~3,910–3,860 m asl, Na-HCO3 相), 以及 (3) 湖相平原承压层中的蒸发岩溶解 (~3,860–3,810 m asl, Na-Cl-SO4 相) 。山前子系统中在 3,960–3,860 m asl 观察到人为硝酸盐在地下水中的最高贡献。基于同位素分析, 高的贡献值与受粪堆、合成氮肥和污水收集管影响的区域的浸出有关。在这个子系统中, 可以在人为影响最小的情况下理解自然条件下水岩相互作用, 从而可以清楚地识别硝酸盐来源。发生在山前子系统地形低处的反硝化作用被确定为主要的自然衰减过程。多示踪方法的一致性有助于理解沿地下水流系统发生的主要过程, 并证实了人为硝酸盐的重要作用。因此, 该含水层系统代表了该地区沿由自然水岩相互作用过程和人为污染影响引起的重力驱动流动的水化学演化的理想模型。

Resumo

Uma abordagem de multitraçadores hidroquímicos e isótopos estável (\({\delta }^{15}{\mathrm{N}}_{{\mathrm{NO}}_{3}}\) e \({\delta }^{18}{\mathrm{O}}_{{\mathrm{NO}}_{3}}\)) foi combinada com o conhecimento geológico e hidrogeológico já existente de uma bacia dominada por águas subterrâneas, localizada na região semiárida do Altiplano Boliviano (SE do Lago Titicaca). Os principais processos naturais e impactos antropogênicos que controlam a química das águas e as composições isotópicas da água subterrânea foram identificadas e as zonas impactadas do aquífero correspondentes determinadas. Os principais processos naturais são, seguindo as linhas de fluxo da água, (1) intemperismo de silicato no subsistema do piemonte (~4,600–3,910 m acima do nível do mar, fácies Ca(Mg)-HCO3, (2) troca Na-Ca dentro dos depósitos glacial-fluviais sobrejacentes depósitos paleolacustres (~3,910–3,860 m de altitude, fácies Na-HCO3) e (3) dissolução de evaporito na zona confinada da planície lacustre (~3,860–3,810 m de altitude, fácies Na-Cl-SO4). As maiores contribuições de nitrato antropogênico em águas subterrâneas foram observadas em 3,960–3,860 m anm no subsistema do Piemonte e foram isotopicamente associados à lixiviação de áreas influenciadas por pilhas de esterco, fertilizantes sintéticos de N e tubos coletores de esgoto. Neste subsistema, as interações naturais água-rocha podem ser interpretada como tendo impacto antropogênico mínimo, permitindo que as fontes de nitrato sejam claramente identificadas. A desnitrificação que ocorre nas áreas topográficas baixas do subsistema do Piemonte, foi identificada como o principal processo natural de atenuação. A abordagem multitraçadores forneceu uma compreensão consistente dos principais processos que ocorrem ao longo do sistema de fluxo da água subterrânea e confirmou o papel significativo do nitrato antropogênico. Este sistema aquífero representa, portanto, um modelo ideal da evolução hidroquímica da região ao longo do fluxo, impulsionado pela gravidade, causado por processos naturais de interação água-rocha e pela influência da contaminação antropogênica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aguilera J, Motavalli PP, Gonzales MA, Valdivia C (2013) Response of a potato-based cropping system to conventional and alternative fertilizers in the Andean highlands. Int J Plant Soil Sci 3(2):139–162

  • Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution, 2nd edn. Balkema, Dordrecht, The Netherlands

    Google Scholar 

  • Archundia D, Duwig C, Spadini L, Uzu G, Guedron S, Morel MC (2017a) How uncontrolled urban expansion increases the contamination of the Titicaca lake basin (El Alto, La Paz, Bolivia). Water Air Soil Pollut 228:44. https://doi.org/10.1007/s11270-016-3217-0

    Article  Google Scholar 

  • Archundia D, Duwig C, Lehembre F, Chiron S, Morel MC, Prado B, Bourdat-Deschamps M, Vince E, Flores Avilés G, Martins JMF (2017b) Antibiotic pollution in the Katari subcatchment of the Titicaca Lake: major transformation products and occurrence of resistance genes. Sci Total Environ 576:671–682. https://doi.org/10.1016/j.scitotenv.2016.10.129

    Article  Google Scholar 

  • Argollo J, Mouguiart P (2000) Late Quaternary climate history of the Bolivian Altiplano. Quatern Int 72:37–51

    Article  Google Scholar 

  • Baghvand A, Nasrabadi T, Bidhendi GN, Vosoogh A, Karbassi A, Mehrdadi N (2010) Groundwater quality degradation of an aquifer in Iran central desert. Desalination 260(1–3):264–275. https://doi.org/10.1016/j.desal.2010.02.038

    Article  Google Scholar 

  • Barroso CA (2010) Delimitación de la contaminación del agua subterránea por lixiviados en un till glacial del relleno sanitario “Villa Ingenio”: El Alto-Bolivia [Delimitation of groundwater contamination by leachate in a glacial till of the “Villa Ingenio” sanitary landfill: El Alto-Bolivia]. Master’s Thesis, University Mayor Real y Pontificia de San Francisco Xavier de Chuquisaca, Sucre, Bolivia

  • Bayanzul B, Nakamura K, Machida I, Watanabe N, Komai T (2019) Construction of a conceptual model for confined groundwater flow in the Gunii Khooloi Basin, southern Gobi Region, Mongolia. Hydrogeol J. https://doi.org/10.1007/s10040-019-01955-8

  • BID (2016) Programa de Saneamiento del Lago Titicaca (Cuenca Katari, Bahía Cohana) BO-L1118, Análisis Ambiental y Social (AAS) [Lake Titicaca Sanitation Program (Katari Basin, Cohana Bay) BO-L1118, Environmental and Social Analysis (AAS)]. https://ewsdata.rightsindevelopment.org/files/documents/18/IADB-BO-L1118_PbsvUa3.pdf. Accessed Dec 2021

  • Bourgeois I, Savarino J, Némery J, Caillon N, Albertin S, Delbart F, Voisin D, Clément JC (2018) Atmospheric nitrate export in streams alonga montane to urban gradient. Sci Total Environ 633:329–340. https://doi.org/10.1016/j.scitotenv.2018.03.141

    Article  Google Scholar 

  • Chadha DK (1999) A proposed new diagram for geochemical classification of natural waters and interpretation of chemical data. Hydrogeol J 7:431–439

    Article  Google Scholar 

  • Clark I (2015) Groundwater geochemistry and isotopes. CRC, Boca Raton, FL

    Book  Google Scholar 

  • Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. CRC, Boca Raton, FL

  • Delconte CA, Sacchi E, Racchetti E, Bartoli M, Mas-Pla J, Re V (2014) Nitrogen inputs to a river course in a heavily impacted watershed: a combined hydrochemical and isotopic evaluation (Oglio River Basin, N Italy). Sci Total Environ 466–467:924–938. https://doi.org/10.1016/j.scitotenv.2013.07.092

    Article  Google Scholar 

  • Deutsch WJ (1997) Groundwater geochemistry: fundamentals and applications to contamination. CRC, Boca Raton, FL

  • FAO (1999) Organización de las Naciones Unidas para la Agricultura y la Alimentación, Bolivia hacia una estrategia de Fertilizantes, Informe preparado para el Gobierno de Bolivia por el Proyecto Manejo de Suelos y Nutrición Vegetal en Sistemas de Cultivos GCPF/BOL/018/NET – “Fertisuelos” [Food and Agriculture Organization of the United Nations, Bolivia towards a Fertilizer strategy, Report prepared for the Government of Bolivia by the Project Soil Management and Plant Nutrition in Crop Systems GCPF / BOL / 018 / NET - “Fertisuelos”]. https://mydokument.com/bolivia-hacia-una-estrategia-de-fertilizantes.html. Accessed Dec 2021

  • Flores Avilés GP, Descloitres M, Duwig C, Rossier Y, Spadini L, Legchenko A, Soruco A, Argollo J, Pérez M, Medinaceli W (2020) Insight into the Katari-Lago Menor Basin aquifer, Lake Titicaca-Bolivia, inferred from geophysical (TDEM), hydrogeological and geochemical data. J South American Earth Sci 99:102479. https://doi.org/10.1016/j.jsames.2019.102479

    Article  Google Scholar 

  • Fonturbel F (2005) Physico-chemical and biological indicators of the eutrophication process at Titicaca Lake (Bolivia). Ecol Aplic 4:135–141

  • Foster S, Pulido-Bosch A, Vallejos A, Molina L, Llop A, MacDonald AM (2018) Impact of irrigated agriculture on groundwater-recharge salinity: a major sustainability concern in semi-arid regions. Hydrogeol J 26:2781–2791. https://doi.org/10.1007/s10040-018-1830-2

    Article  Google Scholar 

  • Fritz SC, Baker PA, Seltzer GO, Ballantyne A, Tapia P, Cheng H, Edwards RL (2007) Quaternary glaciation and hydrologic variation in the South American tropics as reconstructed from the Lake Titicaca drilling project. Quat Res 68(3):410–420. https://doi.org/10.1016/j.yqres.2007.07.008

    Article  Google Scholar 

  • Gaillardet J, Dupré B, Louvat P, Allègre CJ (1999) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem Geol 159:3–30

    Article  Google Scholar 

  • Groffman PM, Altabet MA, Bohlke JK, Butterbach-Bahl K, David MB, Firestone MK, Giblin AE, Kana TM, Nielsen LP, Voyteck MA (2006) Methods for measuring denitrification. Ecol Appl 16:2091–2122

    Article  Google Scholar 

  • Guédron S, Point D, Acha D, Bouchet S, Baya PA, Tessier E, Monperrus M, Molina CI, Groleau A, Chauvaud L, Thebault J, Amice E, Alanoca L, Duwig C, Uzu G, Lazarro X, Bertrand A, Bertrand S, Barbraud C, Delord K, Gibon FM, Ibanez C, Flores M, Fernandez Saavedra P, Ezpinoza ME, Heredia C, Rocha F, Zepita C, Amouroux D (2017) Mercury contamination level and speciation inventory in Lakes Titicaca & Uru-Uru (Bolivia): current status and future trends. Environ Pollut 231:262–270. https://doi.org/10.1016/j.envpol.2017.08.009

    Article  Google Scholar 

  • INE (2014) Homepage. National Institute of Statistics of the Bolivian Plurinational State, Censo de Población y Vivienda 2012 Bolivia. www.ine.gob.bo. Accessed Dec 2021

  • Kaiser J, Hastings MG, Houlton BZ, Röckmann T, Sigman D (2007) Triple oxygen isotope analysis of nitrate using the denitrifier method and thermal decomposition of N2O. Anal Chem 79:599–607

    Article  Google Scholar 

  • Kammoun S, Re V, Trabelsi R, Zouari K, Daniele S (2018) Assessing seasonal variations and aquifer vulnerability in coastal aquifers of semi-arid regions using a multi-tracer isotopic approach: the case of Grombalia (Tunisia). Hydrogeol J 26:2575–2594. https://doi.org/10.1007/s10040-018-1816-0

    Article  Google Scholar 

  • Kendall C, Aravena R (2000) Nitrate isotopes in groundwater systems. In: Cook PG, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Springer, Boston, MA, pp 261–297

    Chapter  Google Scholar 

  • Kendall C, Elliott EM, Wankel SD (2007) Tracing anthropogenic inputs of nitrogen to ecosystems, chap 12. In: Michener RH, Lajtha K (eds) Stable isotopes in ecology and environmental science, 2nd edn. Blackwell, Oxford, pp 375–449

  • Kinouchi T, Liu T, Mendoza J, Asaoka Y (2013) Modeling glacier melt and runoff in a high-altitude headwater catchment in the Cordillera Real, Andes. Hydrol Earth Syst Sci Discuss 10:13093–13144. https://doi.org/10.5194/hessd-10-13093-2013

    Article  Google Scholar 

  • Ma B, Jin M, Liang X, Li J (2017) Groundwater mixing and mineralization processes in a mountain-oasis-desert basin, northwest China: hydrogeochemistry and environmental tracer indicators. Hydrogeol J 26:233–250. https://doi.org/10.1007/s10040-017-1659-0

    Article  Google Scholar 

  • Mariotti A, Landreau A, Simon B (1988) 15N isotope biogeochemistry and natural denitrification process in groundwater: application to the chalk aquifer of northern France. Geochim Cosmochim Acta 52(7):1869–1878

    Article  Google Scholar 

  • Martinelli G, Dadomo A, De Luca DA, Mazzola M, Lasagna M, Pennissi M, Pilla G, Sacchi E, Saccon P (2018) Nitrate sources, accumulation and reduction in groundwater from Northern Italy: insights provided by a nitrate and boron isotopic database. Appl Geochem 91:23–35. https://doi.org/10.1016/j.apgeochem.2018.01.011

    Article  Google Scholar 

  • Martinez D, Moschione E, Bocanegra E, Glock Galli M, Aravena R (2014) Distribution and origin of nitrate in groundwater in an urban and suburban aquifer in Mar del Plata, Argentina. Environ Earth Sci. https://doi.org/10.1007/s12665-014-3096-x

  • MMAyA Environmental Audit (2014) Informe de Auditoría sobre el Desempeño Ambiental respecto de la Contaminación Hídrica en la Cuenca del Río Katari y la Bahía de Cohana K2/AP05/J13 J13 [Audit report on environmental performance regarding water pollution in the Katari River Basin and Cohana Bay K2/AP05/J13]. https://www.contraloria.gob.bo/portal. Accessed Dec 2021

  • MMAyA (2014) Plan Maestro Metropolitano de Agua Potable y Saneamiento La Paz-El Alto Bolivia. Ministerio de Medio Ambiente y Agua, Viceministerio de Recursos Hídricos y Riego, La Paz, Bolivia [Metropolitan Master Plan for Drinking Water and Sanitation La Paz-El Alto Bolivia. Ministry of Environment and Water, Vice Ministry of Water Resources and Irrigation, La Paz, Bolivia], pp 106–172. www.mmaya.gob.bo. Accessed Dec 2021

  • MMAyA (2016) Plan de Manejo Preliminar de los Acuíferos de Purapurani y Viacha. Ministerio de Medio Ambiente y Agua Viceministerio de Recursos Hídricos y Riego, La Paz, Bolivia [Preliminary Management Plan for the Purapurani and Viacha Aquifers. Ministry of Environment and Water Vice Ministry of Water Resources and Irrigation, La Paz, Bolivia]. https://datos.siarh.gob.bo/biblioteca. Accessed Dec 2021

  • Murray BP, Horton BK, Matos R, Heizler MT (2010) Oligocene-Miocene basin evolution in the northern Altiplano, Bolivia: implications for evolution of the central Andean backthrust belt and high plateau. GSA Bull 122(9/10):1443–1462. https://doi.org/10.1130/B30129.1

    Article  Google Scholar 

  • Nordstrom DK, Alpers CN, Ptacek CJ, Blowes DW (2000) Negative pH and Extremely Acidic Mine Waters from Iron Mountain California. Environ Sci Technol 34(2):254–258. https://doi.org/10.1021/es990646v

    Article  Google Scholar 

  • Parkhurst DL, Appelo CAJ (2013) Description of input and examples for PHREEQC version 3: a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geological Survey Techniques and Methods, book 6, chap A43. http://pubs.usgs.gov/tm/06/a43/. Accessed Dec 2021

  • Parnachev VP, Banks D, Berezovsky AY (1999) Hydrochemical evolution of Na-SO4-Cl groundwaters in a cold, semi-arid region of southern Siberia. Hydrogeol J 7:546–560

    Article  Google Scholar 

  • Pauwels H, Foucher JC, Kloppmann W (2000) Denitrification and mixing in a schist aquifer: influence on water chemistry and isotopes. Chem Geol 168:307–324

    Article  Google Scholar 

  • Pilla G, Sacchi E, Zuppi G, Braga G, Ciancetti G (2006) Hydrochemistry and isotope geochemistry as tools for groundwater hydrodynamic investigation in multilayer aquifers: a case study from Lomellina, Po Plain, south-western Lombardy, Italy. Hydrogeol J 14:795–808

    Article  Google Scholar 

  • Quino-Lima I, Ormachea Muñoz M, Ramos Ramos OE, Bhattacharya P, Quispe Choque R, Quintanilla Aguirre J, Sracek O (2019) Hydrochemical assessment with respect to arsenic and other trace elements in the Lower Katari Basin, Bolivian Altiplano. Groundw Sustain Devel 8:281–293. https://doi.org/10.1016/j.gsd.2018.11.013

    Article  Google Scholar 

  • Quino-Lima I, Ramos-Ramos O, Ormachea-Muñoz M, Quintanilla-Aguirre J, Duwig C, Maity JP, Sracek O, Bhattacharua P (2020) Spatial dependency of arsenic, antimony, boron and other trace elements in the shallow groundwater systems of the Lower Katari Basin, Bolivian Altiplano. Sci Total Environ 719:137505. https://doi.org/10.1016/j.scitotenv.2020.137505

    Article  Google Scholar 

  • Re V, Sacchi E, Kammoun S, Triangli C, Trabelsi R, Zouari K, Daniele S (2017) Integrated socio-hydrogeological approach to tackle nitrate contamination in groundwater resources: the case of Grombalia Basin (Tunisia). Sci Total Environ 593–594:664–676. https://doi.org/10.1016/j.scitotenv.2017.03.151

    Article  Google Scholar 

  • Rivett MO, Buss SR, Morgan P, Smith JWN, Bemment CD (2008) Nitrate attenuation in groundwater: a review of biogeochemical controlling processes. Water Res 42:4215–4232. https://doi.org/10.1016/j.watres.2008.07.020

    Article  Google Scholar 

  • Sacchi E, Acutis M, Bartoli M, Brenna S, Delconte CA, Laini A, Pennisi M (2013) Origin and fate of nitrates in groundwater from the central Po plain: insights from isotopic investigations. Appl Geochem 34:164–180. https://doi.org/10.1016/j.apgeochem.2013.03.008

    Article  Google Scholar 

  • Salvaderry-Aranguren MM, Probst A, Roulet M, Isaure MP (2008) Contamination of surface waters by mining wastes in the Milluni Valley (Cordillera Real, Bolivia): mineralogical and hydrological influences. Appl Geochem 23:1299–1324. https://doi.org/10.1016/j.apgeochem.2007.11.019

    Article  Google Scholar 

  • Sigman DM, Caciotti KL, Andreani M, Barford C, Galanter M, Böhkle JK (2001) A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Anal Chem 73:4145–4153

    Article  Google Scholar 

  • Spalding RF, Hirsh EME, Little NA, Kloppenborg KL (2019) Applicability of the dual isotopes δ15N and δ18O to identify nitrate in groundwater beneath irrigated cropland. J Contam Hydrol 220:128–135. https://doi.org/10.1016/j.jconhyd.2018.12.004

    Article  Google Scholar 

  • Steinich B, Escolero O, Marín LE (1998) Salt-water intrusion and nitrate contamination in the Valley of Hermosillo and El Sahuaral coastal aquifers, Sonora, Mexico. Hydrogeol J 6:518–526

    Article  Google Scholar 

  • Sugaki A, Kitakaze A (1988) Tin-bearing minerals from Bolivian polymetallic deposits and their mineralization stages. Min Geol 38(5):419–435

    Google Scholar 

  • Tang C, Azuma K, Yoshifumi I, Baku O, Sakura Y (2004) Nitrate behaviour in the groundwater of a headwater wetlands, Chiba, Japan. Hydrol Process 18:3159–3168

    Article  Google Scholar 

  • Wehrli B (1990) Redox reactions of metal ions at mineral surfaces. In: Stumm W (ed) Aquatic chemical kinetics: reaction rates of processes in natural waters. Wiley, New York, pp 311–336

    Google Scholar 

  • WHO (2006) Guidelines for drinking-water quality: first addendum to third edition, vol 1: recommendations. WHO Library Cataloguing-in-Publication Data. https://www.who.int/water_sanitation_health/dwq/gdwq0506.pdf. Accessed Dec 2021

  • Xanke J, Tanja L, Goeppert N, Klinger J, Gassem N, Goldscheider N (2017) Contamination risk and drinking water protection for a large-scale managed aquifer recharge site in a semi-arid karst region, Jordan. Hydrogeol J 25:1795–1809. https://doi.org/10.1007/s10040-017-1586-0

    Article  Google Scholar 

  • Zhai Y, Wang J, Teng Y, Zuo R (2013) Hydrogeochemical and isotopic evidence of groundwater evolution and recharge in aquifers in Beijing Plain, China. Environ Earth Sci 69:2167–2177. https://doi.org/10.1007/s12665-012-2045-9

    Article  Google Scholar 

  • Zeballos A, Weihd P, Blanco M, Machaca V (2016) Geological, mineralogical and chemical characterization of Devonian kaolinite-bearing sediments for further applications in the ceramic (tiles) industry in La Paz, Bolivia. Environ Earth Sci 75:546. https://doi.org/10.1007/s12665-015-5212-y

    Article  Google Scholar 

Download references

Acknowledgements

We would like to extend our sincere gratitude to Mayra Pérez for her support during the field campaigns and to Dr. María Avilés Rojas for her technical assistance. Special thanks to the Ministry of Environment and Water (MMAyA, La Paz) and the University of San Andres (UMSA, La Paz) for their logistical support, to the IGE laboratory for their technical assistance and support during the analysis of the water samples, and to the local communities of the Municipalities of Pucarani, Batallas, Laja, Viacha, Puerto Pérez, and El Alto for their support during the field work.

Funding

The present study was undertaken with the financial support of the Plurinational State of Bolivia provided through the Program “100 Scholarships for Postgraduate Education within the Framework of Technological and Scientific Sovereignty”, Supreme Decree 2100 (1 September 2014), and partly funded by LABEX OSUG@2020, ANR grant no. ANR-10-LABX-56 (financed by the Future Investments programme launched by the French government and implemented by the ANR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Patricia Flores Avilés.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 653 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flores Avilés, G.P., Spadini, L., Sacchi, E. et al. Hydrogeochemical and nitrate isotopic evolution of a semiarid mountainous basin aquifer of glacial-fluvial and paleolacustrine origin (Lake Titicaca, Bolivia): the effects of natural processes and anthropogenic activities. Hydrogeol J 30, 181–201 (2022). https://doi.org/10.1007/s10040-021-02434-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-021-02434-9

Keywords

Navigation