Skip to main content

Advertisement

Log in

New insights into the rainfall variability in the tropical Andes on seasonal and interannual time scales

  • Published:
Climate Dynamics Aims and scope Submit manuscript

A Correction to this article was published on 11 January 2021

This article has been updated

Abstract

In this study, we analyze the atmospheric mechanisms associated with the main rainfall patterns in the tropical Andes (\(20^{\circ }\hbox {S}\)\(1^{\circ }\hbox {N}\)) on seasonal and interannual time scales. Using a homogeneous and high spatial resolution precipitation data set (\(0.05^{\circ }\times 0.05^{\circ }\)) at monthly time step (CHIRPS; 1981–2016), in-situ precipitation from 206 rain-gauge stations, power spectrum and EOF analysis, we identify three Andean regions characterized by specific seasonal and interannual rainfall modes: the equatorial Andes (EA, \(5^{\circ }\hbox {S}\)\(1^{\circ }\hbox {N}\)), the transition zone (TZ, \(8^{\circ }\hbox {S}\)\(5^{\circ }\hbox {S}\)) and the southern tropical Andes (STA, \(20^{\circ }\hbox {S}\)\(8^{\circ }\hbox {S}\)). On seasonal time scales, the main mode of precipitation in the EA and STA are characterized by a unimodal regime, while the TZ is represented by a bimodal regime. The EA and the TZ share the same wet season in the February–April period, which is associated with a weakened Walker Cell, the southerly position of the Intertropical Convergence Zone (ITCZ) and a strong westward humidity transport from the equatorial Amazon. This latter mechanism and a reduced elevation of the Andes are associated with the October–November wet season in the TZ. The presence of the Bolivian High and the northward extension of the Low Level Jet are associated with the precipitation over Andean regions between 20\(^{\circ }\)S and 8\(^{\circ }\)S in the December–March period. On interannual time scales, extreme monthly wet events (EMWE) in the STA (TZ) are related to convection over the western (equatorial) Amazon during the December–March (February–April) period, showing an atmospheric relationship between the Amazon and the Andes. Extreme monthly dry events (EMDE) in the TZ and in the EA during the February–April period are related to a strengthened Walker Cell, especially in the eastern Pacific. In addition, EMWE (EMDE) in the EA are associated with an anomalous southward (northward) displaced eastern Pacific ITCZ. Moreover, we find a relationship between precipitation at higher elevations in the Andes north of \(10^{\circ }\hbox {S}\) and easterly winds at 200 hPa during February–April EMWE. Finally, extreme monthly events in the EA (STA) are related to sea surface temperature anomalies in the western (central) equatorial Pacific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Change history

  • 11 January 2021

    The original version of the article contained errors in Fig.

References

  • Bendix A, Bendix J (2006) Heavy rainfall episodes in Ecuador during El Niño events and associated regional atmospheric circulation and SST patterns. Adv Geosci 6:43–49

    Article  Google Scholar 

  • Bendix J, Lauer W (1992) Die Niederschlagsjahreszeiten in Ecuador und ihre klimadynamische Interpretation (Rainy seasons in ecuador and their climate-dynamic interpretation). Erdkunde 2(1992):118–134

    Google Scholar 

  • Bretherton CS, Widmann M, Dymnikov VP, Wallace JM, Bladé I (1999) The effective number of spatial degrees of freedom of a time-varying field. J Clim 12(7):1990–2009

    Article  Google Scholar 

  • Campozano L, Célleri R, Trachte K, Bendix J, Samaniego E (2016) Rainfall and cloud dynamics in the Andes: a Southern Ecuador case study. Adv Meteorol 2016:3192765

    Google Scholar 

  • Campozano L, Trachte K, Célleri R, Samaniego E, Bendix J, Albuja C, Mejia JF (2018) Climatology and teleconnections of mesoscale convective systems in an andean basin in southern ecuador: the case of the paute basin. Adv Meteorol 2018(July):1–13

    Article  Google Scholar 

  • Chavez SP, Takahashi K (2017) Orographic rainfall hot spots in the Andes-Amazon transition according to the TRMM precipitation radar and in situ data. J Geophys Res Atmos 122(11):5870–5882

    Article  Google Scholar 

  • Cramér H (1999) Mathematical methods of statistics. Princeton mathematical series. Princeton University Press, Princeton

    Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars AC, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, Mcnally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597

    Article  Google Scholar 

  • DeMaria M (1985) Linear response of a stratified tropical atmosphere to convective forcing. J Atmos Sci 42(18):1944–1959

    Article  Google Scholar 

  • Espinoza JC, Chavez S, Ronchail J, Junquas C, Takahashi K, Lavado W (2015) Rainfall hotspots over the southern tropical Andes: spatial distribution, rainfall intensity, and relations with large-scale atmospheric circulation. Water Resour Res 51(5):3459–3475

    Article  Google Scholar 

  • Espinoza JC, Ronchail J, Guyot JL, Cochonneau G, Naziano F, Lavado W, De Oliveira E, Pombosa R, Vauchel P (2009) Spatio-temporal rainfall variability in the Amazon basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador). Int J Climatol 29(11):1574–1594

    Article  Google Scholar 

  • Espinoza JC, Ronchail J, Lengaigne M, Quispe N, Silva Y, Bettolli ML, Avalos G, Llacza A (2012) Revisiting wintertime cold air intrusions at the east of the Andes: propagating features from subtropical Argentina to Peruvian Amazon and relationship with large-scale circulation patterns. Clim Dyn 41(7–8):1983–2002

    Google Scholar 

  • Espinoza JC, Ronchail J, Marengo J, Segura H (2018) Contrasting North South changes in Amazon wet-day and dry-day frequency and related atmospheric features (1981–2017). Clim Dyn. https://doi.org/10.1007/s00382-018-4462-2

    Article  Google Scholar 

  • Figueroa SN, Satyamurty P, Da Silva Dias PL (1995) Simulations of the summer circulation over the South American region with an Eta coordinate model. J Atmos Sci 52:1573–1584

    Article  Google Scholar 

  • Francou B, Vuille M, Favier V, Caceres B (2004) New evidence for an ENSO impact on low-latitude glaciers: Antizana 15, Andes of Ecuador, 0\(^{\circ }\)28’S. J Geophys Res Atmos 109(18):1–17

    Google Scholar 

  • Funk C, Peterson P, Landsfeld M, Pedreros D, Verdin J, Shukla S, Husak G, Rowland J, Harrison L, Hoell A, Michaelsen J (2015) The climate hazards infrared precipitation with stations-a new environmental record for monitoring extremes. Sci Data 2:150066

    Article  Google Scholar 

  • Garreaud R (1999) Multiscale analysis of the summertime precipitation over the Central Andes. Mon Weather Rev 127:901–921

    Article  Google Scholar 

  • Garreaud R, Aceituno P (2001) Interannual rainfall variability over the South American Altiplano. J Clim 14(1987):2779–2789

    Article  Google Scholar 

  • Garreaud R, Vuille M, Clement AC (2003) The climate of the Altiplano: observed current conditions and mechanisms of past changes. Palaeogeogr Palaeoclimatol Palaeoecol 194(1–3):5–22

    Article  Google Scholar 

  • Garreaud RD (2009) The Andes climate and weather. Adv Geosci 22:3–11

    Article  Google Scholar 

  • Garreaud RD, Vuille M, Compagnucci R, Marengo J (2009) Present-day South American climate. Palaeogeogr Palaeoclimatol Palaeoecol 281(3–4):180–195

    Article  Google Scholar 

  • Gilman D, Fuglister F, Mitchell J (1963) On the power Spectrum of “Red Noise”. J Atmos Sci 20(2):182–184

    Article  Google Scholar 

  • Hastenrath S (2002) The intertropical convergence zone of the Eastern Pacific revisited. Int J Climatol 22(3):347–356

    Article  Google Scholar 

  • Horel JD, Hahmann AN, Geisler JE (1989) An investigation of the annual cycle of convective activity over the tropical Americas. J Clim 2(11):1388–1403

    Article  Google Scholar 

  • Houston J, Hartley AJ (2003) The central Andean west-slope rainshadow and its potential contribution to the origin of hyper-aridity in the Atacama Desert. Int J Climatol 23(12):1453–1464

    Article  Google Scholar 

  • Huang B, Banzon VF, Freeman E, Lawrimore J, Liu W, Peterson TC, Smith TM, Thorne PW, Woodruff SD, Zhang HM (2015) Extended reconstructed sea surface temperature version 4 (ERSSTv4) Part I: Upgrades and intercomparisons. J Clim 28(3):911–930

    Article  Google Scholar 

  • Hurley JV, Vuille M, Hardy DR (2016) Forward modeling of \(\delta\)18O in Andean ice cores. Geophys Res Lett 43(15):8178–8188

    Article  Google Scholar 

  • Jauregui YR, Takahashi K (2017) Simple physical-empirical model of the precipitation distribution based on a tropical sea surface temperature threshold and the effects of climate change. Clim Dyn 50:1–21

    Google Scholar 

  • Junquas C, Li L, Vera CS, Le Treut H, Takahashi K (2016) Influence of South America orography on summertime precipitation in Southeastern South America. Clim Dyn 47(9–10):3389–3390

    Article  Google Scholar 

  • Krishnamurti TN, Kanamitsu M, Koss WJ, Lee JD (1973) Tropical East–West circulations during the northern winter. J Atmos Sci 30(5):780–787

    Article  Google Scholar 

  • Lagos P, Silva Y, Nickl E, Mosquera K (2008) El Nino related precipitation variability in Peru. Adv Geosci 3:231–237

    Article  Google Scholar 

  • Laraque A, Ronchail J, Cochonneau G, Pombosa R, Guyot JL (2007) Heterogeneous distribution of rainfall and discharge regimes in the Ecuadorian Amazon Basin. J Hydrometeorol 8(6):1364–1381

    Article  Google Scholar 

  • Lavado W, Espinoza JC (2014) Impactos de El Niño y La Niña en las lluvias del Perú (1965–2007). Rev Bras Meteorol 29:171–182

    Article  Google Scholar 

  • Lenters JD, Cook KH (1997) On the origin of the bolivian high and related circulation features of the South American climate. J Atmos Sci 54(5):656–678

    Article  Google Scholar 

  • Lorenz EN (1956) Empirical orthogonal functions and statistical weather prediction. Scientific report/Massachusetts Institute of Technology. Statistical Forecasting Project, Massachusetts Institute of Technology, Department of Meteorology, Cambridge

    Google Scholar 

  • Paccini L, Espinoza JC, Ronchail J, Segura H (2018) Intra-seasonal rainfall variability in the Amazon basin related to large-scale circulation patterns: a focus on western AmazonAndes transition region. Int J Climatol 38(5):2386–2399

    Article  Google Scholar 

  • Rau P, Bourrel L, Labat D, Melo P, Dewitte B, Frappart F, Lavado W, Felipe O (2017) Regionalization of rainfall over the Peruvian Pacific slope and coast. Int J Climatol 37(1):143–158

    Article  Google Scholar 

  • Rollenbeck R, Bendix J (2011) Rainfall distribution in the Andes of southern Ecuador derived from blending weather radar data and meteorological field observations. Atmos Res 99(2):277–289

    Article  Google Scholar 

  • Schwendike J, Berry GJ, Reeder MJ, Jakob C, Govekar P, Wardle R (2015) Trends in the local Hadley and local Walker circulations. J Geophys Res 120(15):7599–7618

    Article  Google Scholar 

  • Segura H, Espinoza JC, Junquas C, Takahashi K (2016) Evidencing decadal and interdecadal hydroclimatic variability over the Central Andes. Environ Res Lett 11(9):094016

    Article  Google Scholar 

  • Sicart JE, Espinoza JC, Quéno L, Medina M (2016) Radiative properties of clouds over a tropical Bolivian glacier: seasonal variations and relationship with regional atmospheric circulation. Int J Climatol 36(8):3116–3128

    Article  Google Scholar 

  • Silva Dias PL, Schubert WH, DeMaria M (1983) Large-scale response of the tropical atmosphere to transient convection. J Atmos Sci 40(11):2689–2707

    Article  Google Scholar 

  • Sulca J, Takahashi K, Espinoza JC, Vuille M, Lavado-Casimiro W (2018) Impacts of different ENSO flavors and tropical Pacific convection variability (ITCZ, SPCZ) on austral summer rainfall in South America, with a focus on Peru. Int J Climatol 38(1):420–435

    Article  Google Scholar 

  • Takahashi K, Martínez AG (2017) The very strong coastal El Niño in 1925 in the far-eastern Pacific. Clim Dyn. https://doi.org/10.1007/s00382-017-3702-1

    Article  Google Scholar 

  • Tanaka HL, Ishizaki N, Kitoh A (2004) Trend and interannual variability of Walker, monsoon and Hadley circulations defined by velocity potential in the upper troposphere. Tellus Ser A Dyn Meteorol Oceanogr 56(3):250–269

    Article  Google Scholar 

  • Thomson DJ (1982) Spectrum estimation and harmonic analysis. Proc IEEE 70(9):1055–1096

    Article  Google Scholar 

  • Tobar V, Wyseure G (2018) Seasonal rainfall patterns classification, relationship to ENSO and rainfall trends in Ecuador. Int J Climatol 38(4):1808–1819

    Article  Google Scholar 

  • Vera C, Higgins W, Amador J, Ambrizzi T, Garreaud R, Gochis D, Gutzler D, Lettenmaier D, Marengo J, Mechoso CR, Nogues-Paegle J, Dias PLS, Zhang C (2006) Toward a unified view of the American monsoon systems. J Clim 19(20):4977–5000

    Article  Google Scholar 

  • Vicente-Serrano SM, Aguilar E, Martínez R, Martín-Hernández N, Azorin-Molina C, Sanchez-Lorenzo A, El Kenawy A, Tomás-Burguera M, Moran-Tejeda E, López-Moreno JI, Revuelto J, Beguería S, Nieto JJ, Drumond A, Gimeno L, Nieto R (2017) The complex influence of ENSO on droughts in Ecuador. Clim Dyn 48(1–2):405–427

    Article  Google Scholar 

  • Virji H (1981) A preliminary study of summertime tropospheric circulation patterns over South America estimated from cloud winds. Mon Weather Rev 109(3):599–610

    Article  Google Scholar 

  • Vuille M (1999) Atmospheric circulation over the Bolivian Altiplano during dry and wet periods and extreme phases of the southern oscillation. Int J Climatol 19:1579–1600

    Article  Google Scholar 

  • Vuille M, Bradley RS, Keimig F (2000) Climate variability in the andes of ecuador and its relation to tropical Pacific and Atlantic sea surface temperature anomalies. J Clim 13:2520–2535

    Article  Google Scholar 

  • Vuille M, Hardy DR, Braun C, Keimig F, Bradley RS (1998) Atmospheric circulation anomalies associated with 1996/1997 summer precipitation events on Sajama Ice Cap. Bolivia J Geophys Res 103(D10):11191

    Article  Google Scholar 

  • Vuille M, Kaser G, Juen I (2008) Glacier mass balance variability in the Cordillera Blanca, Peru and its relationship with climate and the large-scale circulation. Glob Planet Change 62(1–2):14–28

    Article  Google Scholar 

  • Vuille M, Keimig F (2004) Interannual variability of summertime convective cloudiness and precipitation in the central Andes derived from ISCCP-B3 data. J Clim 17:3334–3348

    Article  Google Scholar 

  • Xie SP, Peng Q, Kamae Y, Zheng XT, Tokinaga H, Wang D (2018) Eastern pacific ITCZ dipole and ENSO diversity. J Clim 31(11):4449–4462

    Article  Google Scholar 

  • Zhou J, Lau KM (1998) Does a monsoon climate exist over South America? J Clim 11(5):1020–1040

    Article  Google Scholar 

Download references

Acknowledgements

The first author H. S. was funded by the IRD program LMI-GREATICE, IDEX grants of University Grenoble Alpes (UGA), the VASPAT project IDEX “IRS-Initiative de Recherche Stratégique” of UGA (part of the ANR project ANR-15-IDEX-02), and PNICP-Peru funds through contract 397-PNICP-PIAP-2014. Authors from IGE acknowledge the support of the Labex OSUG@2020 (Investissements d’avenir - ANR10 LABX56). The authors are grateful to J. -E. Sicart and C. Obled for stimulating exchanges within the CYME team of IGE and to J. Ronchail and L. Li of IPSL for discussions held in the framework of H. Segura’s PhD. thesis committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Segura.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 1378 KB)

Supplementary material 2 (docx 35 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Segura, H., Junquas, C., Espinoza, J.C. et al. New insights into the rainfall variability in the tropical Andes on seasonal and interannual time scales. Clim Dyn 53, 405–426 (2019). https://doi.org/10.1007/s00382-018-4590-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-018-4590-8

Keywords

Navigation