Issue 4, 2022

O3–NOy photochemistry in boundary layer polluted plumes: insights from the MEGAPOLI (Paris), ChArMEx/SAFMED (North West Mediterranean) and DACCIWA (southern West Africa) aircraft campaigns

Abstract

The ozone–NOy photochemistry is explored in contrasting polluted plumes sampled with the Safire ATR 42 research aircraft during three summer field international campaigns in the megacity Paris, the North West Mediterranean basin (WMB) and southern West Africa (SWA). Various metrics derived from the photostationary steady state (PSS) and the ozone production efficiency (OPE) are calculated from airborne observations. A new metric, the oxidant production rate normalized to carbon monoxide (PROx), is introduced and quantified as a function of the processing time of the plume. In most of the polluted plumes, it is found that the Leighton ratio (Φ) characterizing the equilibrium between O3 and NOx is, on average, within the PSS range ([1 ± 0.32]) or greater. The positive dependence of Ox to NO usually indicates a VOC-sensitive regime inside the plumes with some exceptions. In Paris, under oceanic westerly winds, and during DACCIWA, the plumes show a rural-like chemistry behaviour at moderate NOx levels (NOx-sensitive). Intense and frequent rapid changes in J(NO2), NO and NO2 explain the deviations from the PSS. The OPE for Paris plume suggests that the VOC-sensitive regime extends far beyond the urban plume. The mean ozone production is higher downwind of Paris (30 ppb h−1 on average) compared to SWA (20 ppb h−1) and WMB (6 ppb h−1). PROx values vary between 0 (no oxidant production) and 0.27 ppb[Ox] ppb[CO]−1 h−1. The determined uncertainty on the Leighton ratio value could affect the differences in the estimation of the photochemical oxidant production by PO3 and PROx. The emissions of CO along the flight path and the presence of vegetation and high humidity levels might shape the oxidant production depending on the explored environment. While limited in number, PROx values set a benchmark for future photochemical studies to compare with: Paris as representative of an anthropogenic urban plume and WMB as representative of a biogenic continental plume.

Graphical abstract: O3–NOy photochemistry in boundary layer polluted plumes: insights from the MEGAPOLI (Paris), ChArMEx/SAFMED (North West Mediterranean) and DACCIWA (southern West Africa) aircraft campaigns

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
09 Nov 2021
Accepted
16 Apr 2022
First published
12 May 2022
This article is Open Access
Creative Commons BY-NC license

Environ. Sci.: Atmos., 2022,2, 659-686

O3–NOy photochemistry in boundary layer polluted plumes: insights from the MEGAPOLI (Paris), ChArMEx/SAFMED (North West Mediterranean) and DACCIWA (southern West Africa) aircraft campaigns

B. Thera, P. Dominutti, A. Colomb, V. Michoud, J.-F. Doussin, M. Beekmann, F. Dulac, K. Sartelet and A. Borbon, Environ. Sci.: Atmos., 2022, 2, 659 DOI: 10.1039/D1EA00093D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements