Skip to main content

Advertisement

Log in

Object-based characterization of vegetation heterogeneity with sentinel images proves efficient in a highly human-influenced National Park of Côte d’Ivoire

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Forest monitoring requires more automated systems to analyze high ecosystem heterogeneity. The traditional pixel-based detection method has proven to be less and less effective. A novel change detection method is therefore proposed to detect changes in forest cover using satellite images at very high spatial resolution. This is object-oriented classification, which groups pixels into interpreted objects, based on their spectral values, spatial, and textural properties. Using sentinel and Lansat images, we tested for the first time in the West African rainforest zone the effectiveness of this method for better detection, delineation, and analysis of land use and occupation types. The mean shift algorithm was used in both the segmentation and classification processes. Next, we compared the proposed object-oriented method with a pixel-based image classification detection method by implementing both methods under the same conditions. High detection accuracy (> 90%) and an overall Kappa greater than 0.90 were obtained by the object-oriented method, which is about 20% higher than the pixel-based method. The object-based method was free of salt and pepper effects and was less prone to image misregistration in terms of change detection accuracy and mapping results. This study demonstrates that the object-based classifier is a much better approach than the classical pixel-based classifier. In addition, it shows the problems of detecting heterogeneous landscapes and explains the observed confusions between the types of vegetation formations specific to tropical wetlands. The results obtained are encouraging and the contribution of high-resolution images and the object-based method to better discrimination of tropical wetland vegetation is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adou Yao, C. Y., Bakayoko, A., Akpatou, K. B., & N’Guessan, K. (2011). Impacts of anthropogenic pressures on the flora and vegetation structure in the classified forest of Monogaga, Cote d’Ivoire. Journal of Animal and Plant Sciences (JAPS), 12(2), 1560–1572.

    Google Scholar 

  • Aksoy, T., Dabanli, A., Cetin, M., Senyel Kurkcuoglu, M. A., Cengiz, A. E., Cabuk, S. N., & Cabuk, A. (2022). Evaluation of comparing urban area land use change with Urban Atlas and CORINE data. Environmental Science and Pollution Research, 29(19), 28995–29015.

    Article  Google Scholar 

  • Andrieu, J., & Mering, C. (2008). Cartographie par télédétection des changements de la couverture végétale sur la bande littorale ouest-africaine : Exemple des Rivières du Sud du delta du Saloum au Rio Geba. Télédétection, 8(2), 93–118.

    Google Scholar 

  • Antrop, M. (1985). Analyse texturale du paysage par interprétation visuelle d’images Landsat (MSS 7) et de photographies aériennes. Hommes Et Terres Du Nord, 3(1), 162–168. https://doi.org/10.3406/htn.1985.1996

    Article  Google Scholar 

  • Aubréville, A. (1957). Accord à Yangambi sur la nomenclature des types africains de végétation. BOIS & Forets Des Tropiques, 51, 23–27.

    Google Scholar 

  • Benz, U. C., Hofmann, P., Willhauck, G., Lingenfelder, I., & Heynen, M. (2004). Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS Journal of Photogrammetry and Remote Sensing, 58(3–4), 239–258. https://doi.org/10.1016/j.isprsjprs.2003.10.002

    Article  Google Scholar 

  • Blaschke, T. (2010). Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1), 2–16. https://doi.org/10.1016/j.isprsjprs.2009.06.004

    Article  Google Scholar 

  • Blaschke, T., & Strobl, J. (2001). What’s wrong with pixels? Some recent developments interfacing remote sensing and GIS. Zeitschrift für Geoinformationssysteme, 12–17.

  • Bruno, K. K. (2015). Diversité floristique et structurale des cacaoyères du « v baoulé » : cas de la sous-préfecture de kokumbo (centre, côte d’ivoire). 21.

  • Burnett, C., & Blaschke, T. (2003). A multi-scale segmentation/object relationship modelling methodology for landscape analysis. Ecological Modelling, 168(3), 233–249. https://doi.org/10.1016/S0304-3800(03)00139-X

    Article  Google Scholar 

  • Chehata, N., Orny, C., Boukir, S., & Guyon, D. (2013). Object-based forest change detection using high resolution satellite images. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII-3/W22, 49–54. https://doi.org/10.5194/isprsarchives-XXXVIII-3-W22-49-2011

  • Chehata, N., Orny, C., Boukir, S., Guyon, D., & Wigneron, J. P. (2014). Object-based change detection in wind storm-damaged forest using high-resolution multispectral images. International Journal of Remote Sensing, 35(13), 4758–4777. https://doi.org/10.1080/01431161.2014.930199

    Article  Google Scholar 

  • Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37(1), 35–46.

    Article  Google Scholar 

  • Corbane, C., Baghdadi, N., & Chevrel, S. (2004). Application d’une méthode de classification orientée objet pour la cartographie de l’occupation du sol : Résultats sur ASTER et Landsat ETM. Revue française de photogrammétrie et de télédétection.

  • Desclée, B., Bogaert, P., & Defourny, P. (2004). Object-based method for automatic forest change detection. IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium, 5, 3383–3386.

    Google Scholar 

  • Desclée, B., Bogaert, P., & Defourny, P. (2006). Forest change detection by statistical object-based method. Remote Sensing of Environment, 102(1–2), 1–11. https://doi.org/10.1016/j.rse.2006.01.013

    Article  Google Scholar 

  • Dronova, I. (2015). Object-based image analysis in wetland research : A review. Remote Sensing, 7(5), 6380–6413. https://doi.org/10.3390/rs70506380

    Article  Google Scholar 

  • Duro, D. C., Franklin, S. E., & Dubé, M. G. (2012). A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sensing of Environment, 118, 259–272. https://doi.org/10.1016/j.rse.2011.11.020

    Article  Google Scholar 

  • Fisher, P. (1997). The pixel : A snare and a delusion. International Journal of Remote Sensing, 18(3), 679–685. https://doi.org/10.1080/014311697219015

    Article  Google Scholar 

  • Gao, Y., & Mas, J. F. (2008). Une comparaison des performances des classifications basées sur les pixels et basées sur les objets sur des images avec différentes résolutions spatiales. Revue En Ligne Des Sciences De La Terre, 2(1), 27–35.

    Google Scholar 

  • Geng, R., Jin, S., Fu, B., & Wang, B. (2020). Object-based wetland classification using multi-feature combination of ultra-high spatial resolution multispectral images. Canadian Journal of Remote Sensing, 46(6), 784–802.

    Article  Google Scholar 

  • Girard, M.-C., & Girard, C. M. (1999). Traitement des données de télédétection. Dunod.

    Google Scholar 

  • Grizonnet, M., Michel, J., Poughon, V., Inglada, J., Savinaud, M., & Cresson, R. (2017). Orfeo ToolBox : Open source processing of remote sensing images. Open Geospatial Data, Software and Standards, 2(1), 15. https://doi.org/10.1186/s40965-017-0031-6

    Article  Google Scholar 

  • Guillaumet, J.-L., & Adjanohoun, E. (1971). La végétation de la Côte d’Ivoire.

  • Han, Y., Javed, A., Jung, S., & Liu, S. (2020). Object-based change detection of very high resolution images by fusing pixel-based change detection results using weighted Dempster-Shafer theory. Remote Sensing, 12(6), 983.

    Article  Google Scholar 

  • Hay, G. J., & Castilla, G. (2008). Geographic object-based image analysis (GEOBIA) : A new name for a new discipline. In T. Blaschke, S. Lang, & G. J. Hay (Éds.), Object-Based Image Analysis (pp. 75–89). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-77058-9_4

  • Hervé, D. (2015). 50 ans d’occupation du sol parcellaire après abattis-brûlis (forêt ombrophile de l’est malgache).

  • Huang, G., Laradji, I., Vázquez, D., Lacoste-Julien, S., & Rodriguez, P. (2022). Une enquête sur la détection d’objets auto-supervisée et à quelques coups. Transactions IEEE sur l’analyse de modèles et l’intelligence artificielle.

  • Kana, C. E., Ngouanet, C., Tchanga, A. C. T., Tafokou, R. B. J., Ngangue, G. C. N., & Folack, J. (2019, March). Potentiel de l’imagerie multi-capteur dans le suivi des mangroves de l’estuaire du Wouri-Cameroun. In Conférence OSFACO: Des images satellites pour la gestion durable des territoires en Afrique.

  • Kappelle, M., Kennis, P. A., & de Vries, R. A. (1995). Changes in diversity along a successional gradient in a Costa Rican upper montane Quercus forest. Biodiversity & Conservation, 4(1), 10–34.

    Article  Google Scholar 

  • Keay, R. W. J. (1956). African vegetation : Meeting at Yangambi. Nature, 178(4545), 1273–1274.

    Article  Google Scholar 

  • Kouamé, D. (2009). Rôle des animaux frugivores dans la régénération et la conservation des forêts : Cas de l’éléphant (Loxodonta africana cyclotis) dans le Parc National d’Azagny (sud-ouest de la Côte d’Ivoire).

  • Kouamé, N., & Bi, I. Z. (2010). Nouveau découpage de la zone de forêt dense humide de la Côte d’Ivoire. Sciences & Nature. https://doi.org/10.4314/scinat.v7i2.59962

    Article  Google Scholar 

  • Kouassi, J.-L. (2014). Suivi de la dynamique de l’occupation du sol a l’aide de l’imagerie satellitaire et des systemes d’informations geographiques : cas de la direction regionale des eaux et forets de yamoussoukro (cote d’ivoire). https://doi.org/10.13140/2.1.2359.7128

  • Laliberte, A. S., & Rango, A. (2009). Texture and scale in object-based analysis of subdecimeter resolution unmanned aerial vehicle (UAV) imagery. IEEE Transactions Geoscience and Remote Sensing, 47, 761–770. https://doi.org/10.1109/TGRS.2008.2009355

    Article  Google Scholar 

  • Lauginie, F. (2007). Conservation de la nature et aires protégées en Côte d’Ivoire. NEI. Hachette et Afrique Nature.

  • Liu, D., Song, K., Townshend, J. R., & Gong, P. (2008). Using local transition probability models in Markov random fields for forest change detection. Remote Sensing of Environment, 112(5), 2222–2231.

    Article  Google Scholar 

  • Mäkelä, H., & Pekkarinen, A. (2001). Estimation of timber volume at the sample plot level by means of image segmentation and Landsat TM imagery. Remote Sensing of Environment, 77(1), 66–75.

    Article  Google Scholar 

  • Mastere, M., Achbun, A., El Fellah, S., & El Fellah, B. (2020). Multi-source object-based approach for spatio-temporal evolution of land cover. In Mapping and Spatial Analysis of Socio-economic and Environmental Indicators for Sustainable Development (pp. 37–49). Springer, Cham.

  • Michel, J., Youssefi, D., & Grizonnet, M. (2014). Stable mean-shift algorithm and its application to the segmentation of arbitrarily large remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 53(2), 952–964. https://doi.org/10.1109/TGRS.2014.2330857

    Article  Google Scholar 

  • Monget, J., Poisson, M., & Verger, F. (1980). La cartographie de la forêt de Chizé par télédétection in La télédétection spatiale. Annales Des Mines Paris, 186(4–5), 200–208.

    Google Scholar 

  • Myint, S. W., Gober, P., Brazel, A., Grossman-Clarke, S., & Weng, Q. (2011). Per-pixel vs. Object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sensing of Environment, 115(5), 1145–1161. https://doi.org/10.1016/j.rse.2010.12.017

    Article  Google Scholar 

  • N’Da, H. D., N’Guessan, E. K., Wajda, M. E., & Affian, K. (2008). Apport de la télédétection au suivi de la déforestation dans le Parc National de la Marahoué (Côte d’ Ivoire). Télédétection, 8(1), 17–34.

    Google Scholar 

  • Oszwald, J. (2005). Dynamique des formations agroforestières en Côte d’Ivoire (depuis les années 1980 aux années 2000) : Suivi par télédétection et développement d’une approche cartographique. Lille 1.

  • Oszwald, J., Lefebvre, A., de Sartre, X. A., Thales, M., & Gond, V. (2010). Analyse des directions de changement des états de surface végétaux pour renseigner la dynamique du front pionnier de Maçaranduba (Pará, Brésil) entre 1997 et 2006. Télédétection, 9(2), 97–111.

    Google Scholar 

  • Ozdarici Ok, A., & Akyurek, Z. (2012). A segment-based approach to classify agricultural lands by using multi-temporal optical and microwave data. International Journal of Remote Sensing, 33(22), 7184–7204.

    Article  Google Scholar 

  • Pu, R., & Landry, S. (2012). A comparative analysis of high spatial resolution IKONOS and WorldView-2 imagery for mapping urban tree species. Remote Sensing of Environment, 124, 516–533. https://doi.org/10.1016/j.rse.2012.06.011

    Article  Google Scholar 

  • Rampi, L. P., Knight, J. F., & Pelletier, K. C. (2014). Wetland mapping in the Upper Midwest United States. Photogrammetric Engineering & Remote Sensing, 80(5), 439–448. https://doi.org/10.14358/PERS.80.5.439

  • Rapinel, S., Hubert-Moy, L., & Clément, B. (2014). Combined use of LiDAR data and multispectral earth observation imagery for wetland habitat mapping. International Journal of Applied Earth Observation and Geoinformation. https://doi.org/10.1016/j.jag.2014.09.002

    Article  Google Scholar 

  • Rejaur Rahman, M., & Saha, S. K. (2008). Multi-resolution segmentation for object-based classification and accuracy assessment of land use/land cover classification using remotely sensed data. Journal of the Indian Society of Remote Sensing, 36(2), 189–201. https://doi.org/10.1007/s12524-008-0020-4

    Article  Google Scholar 

  • Sangne, C. Y., Barima, Y. S. S., Bamba, I., & N’Doumé, C.-T. A. (2015). Dynamique forestière post-conflits armés de la Forêt classée du Haut-Sassandra (Côte d’Ivoire). VertigO. https://doi.org/10.4000/vertigo.16784

    Article  Google Scholar 

  • Sellin, V., Magnanon, S., Gourmelon, F., Debaine, F., & Nabucet, J. (2015). Etude expérimentale en cartographie de la végétation par télédétection. Cybergeo. https://doi.org/10.4000/cybergeo.27067

    Article  Google Scholar 

  • Shuai, W., Jiang, F., Zheng, H., & Li, J. (2022). MSGATN: A superpixel-based multi-scale Siamese graph attention network for change detection in remote sensing images. Applied Sciences, 12(10), 5158. https://doi.org/10.3390/app12105158

    Article  CAS  Google Scholar 

  • Steininger, M. K. (2000). Satellite estimation of tropical secondary forest above-ground biomass : Data from Brazil and Bolivia. International Journal of Remote Sensing, 21(6–7), 1139–1157.

    Article  Google Scholar 

  • Wang, K., Franklin, S. E., Guo, X., He, Y., & McDermid, G. J. (2009). Problems in remote sensing of landscapes and habitats. Progress in Physical Geography: Earth and Environment, 33(6), 747–768. https://doi.org/10.1177/0309133309350121

    Article  Google Scholar 

  • Wang, L.-Y., Abyzov, A., Korbel, J. O., Snyder, M., & Gerstein, M. (2008). MSB : A mean-shift-based approach for the analysis of structural variation in the genome. Genome Research, 19(1), 106–117. https://doi.org/10.1101/gr.080069.108

    Article  CAS  Google Scholar 

  • Wang, X., Gao, X., Zhang, Y., Fei, X., Chen, Z., Wang, J., Zhang, Y., Lu, X., & Zhao, H. (2019). Land-cover classification of coastal wetlands using the RF algorithm for Worldview-2 and Landsat 8 images. Remote Sensing, 11(16), 1927. https://doi.org/10.3390/rs11161927

    Article  CAS  Google Scholar 

  • Wang, Y., Soh, Y. S., & Schultz, H. (2006). Individual tree crown segmentation in aerial forestry images by mean shift clustering and graph-based cluster merging. International Journal of Computer Science and Network Security, 6(11), 40–45.

    Google Scholar 

  • Zarin, D. J., Ducey, M. J., Tucker, J. M., & Salas, W. A. (2001). Potential biomass accumulation in Amazonian regrowth forests. Ecosystems, 4(7), 658–668.

    Article  Google Scholar 

  • Zhou, Z., Ma, L., Fu, T., Zhang, G., Yao, M., & Li, M. (2018). Change detection in coral reef environment using high-resolution images: Comparison of object-based and pixel-based paradigms. ISPRS International Journal of Geo-Information, 7(11), 441. https://doi.org/10.3390/ijgi7110441

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the “Sud Expert Plantes et Development Durable” (SEP2D) program for the material and financial support in carrying out this study. They thank the Ivorian Office of Parks and Reserves (OIPR) for authorizing access to the Azagny National Park, as well as the members of the Biodiversity and Valuation of ecosystem services research team (BioValse) for their support on the ground. They also thank the Institute of Environmental Geosciences (IGE) of the University of Grenoble-Alpes for its technical support and advice during the execution of the research work. Finally, we would like to thank the Cooperation and Cultural Action Service (SCAC) of the France Embassy in Côte d’Ivoire, for having funded our doctoral internship stay.

Funding

Our field work was funded by the Institut de Recherche et de développement (IRD) from the SEP2D-PRP3-45 project (Sud Expert Plante et Développement Durable). The training in data analysis methodology was funded by the cooperation and cultural action department of France Embassy in Côte d’Ivoire.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphanie Diane Konan Houphlet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 44959 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Houphlet, S.D.K., Dusseux, P., Adiko, A.E.G. et al. Object-based characterization of vegetation heterogeneity with sentinel images proves efficient in a highly human-influenced National Park of Côte d’Ivoire. Environ Monit Assess 195, 200 (2023). https://doi.org/10.1007/s10661-022-10792-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10792-4

Keywords

Navigation