Skip to main content

Advertisement

Log in

Regional climate modeling of the diurnal cycle of precipitation and associated atmospheric circulation patterns over an Andean glacier region (Antisana, Ecuador)

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

A multi-experiment ensemble is performed using the WRF (Weather Research and Forecasting) model at high spatial resolution (1 km) over the Antisana glacier region (Ecuador), during the year 2005. Our goal is to identify the best model configurations to simulate atmospheric processes at diurnal and seasonal scales. The model is able to reproduce the complex zonal gradient of precipitation between the wet Amazon and the drier inter-Andean region. The main precipitation biases are (i) an overestimation in the afternoon (up to 6 mm/day) in the Antisana region related to local surface circulation patterns and (ii) a nighttime overestimation (up to 20 mm/day) in the Andes-Amazon transition zone associated with the regional circulation. Changing the microphysics scheme and/or the cumulus scheme primarily affect nighttime processes, while changing the topography forcing and activating slope radiation and shading options mostly affects afternoon processes. An adequate choice of the model configuration allows a correct representation of the diurnal cycle of precipitation, and in particular: (i) the mid-level easterly regional flow, (ii) the local moisture transport along and across the valleys, and (iii) the orographic mountain waves on the Antisana summit. For this specific area and year, the best configuration retained defined as “dSRTM_LRad” shows nighttime (daytime) precipitation biases smaller than 2 mm/day (3 mm/day); it is based on non-smoothed SRTM digital elevation model (dSRTM), Lin Purdue microphysics (L), and slope and shading radiation options (Rad). This 1-km resolution configuration requires the activation of the cumulus scheme, that improves the regional nighttime convection induced by the easterly regional flow on the Amazon-Andes transition region. It allows also a realistic strengthening of the daytime upward moisture transport. This study demonstrates that in the Antisana region, 1 km is a resolution still too coarse to deactivate cumulus schemes for a correct representation of cloud convection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Ampuero A, Strikis N, Apaéstegui J, Vuille M, Novello VF, Espinoza JC, Cruz FW, Vonhoff H, Mayta VC, Martins VTS, Campello RC, Alves V, Siffedine A (2020) The forest effects on the isotopic composition of rainfall in the northwestern Amazon Basin. J Geophys Res Atmos 125:e2019JD031445. https://doi.org/10.1029/2019JD031445

    Article  Google Scholar 

  • Arias PA, Garreaud R, Poveda G, Espinoza JC, Molina-Carpio J, Masiokas M, Viale M, Scaff L, van Oevelen PJ (2021) Hydroclimate of the andes part II: hydroclimate variability and sub-continental patterns. Front Earth Sci 8:666. https://doi.org/10.3389/feart.2020.505467

    Article  Google Scholar 

  • Barry RG (2008) Mountain weather and climate, 3rd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Basantes-Serrano R, Rabatel A, Francou B, Vincent C, Maisincho L, Caceres B, Galarraga R, Alvarez D (2016) Slight mass loss revealed by reanalyzing glacier mass-balance observations on Glaciar Antisana 15α (inner tropics) during the 1995–2012 period. J Glaciol 62(231):124–136

    Article  Google Scholar 

  • Bendix J, Lauer W (1992) Die Niederschlagsjahreszeiten in Ecuador und ihre klimadynamische Interpretation (Rainy Seasons in Ecuador and Their Climate-Dynamic Interpretation). Erdkunde 2(1992):118—134. http://www.jstor.org/stable/25646379

  • Buytaert W, Moulds S, Acosta L, De Bievre B, Olmos C, Villacis M, Tovar C, Verbist KM (2017) Glacial melt content of water use in the tropical Andes. Environ Res Lett 12(11):114014

    Article  Google Scholar 

  • Campozano L, Célleri R, Trachte K, Bendix J, Samaniego E (2016) Rainfall and cloud dynamics in the andes: a Southern Ecuador Case Study. Adv Meteorol 2016:15. https://doi.org/10.1155/2016/3192765

    Article  Google Scholar 

  • Campozano L, Robaina L, Samaniego E (2020) The Pacific decadal oscillation modulates the relation of ENSO with the rainfall variability in coast of Ecuador. Int J Climatol 40(13):5801–5812

    Article  Google Scholar 

  • Cavalcante RBL, da Silva Ferreira DB, Pontes PRM, Tedeschi RG, da Costa CPW, de Souza EB (2020) Evaluation of extreme rainfall indices from CHIRPS precipitation estimates over the Brazilian Amazonia. Atmos Res 238:104879

    Article  Google Scholar 

  • Chavez SP, Takahashi K (2017) Orographic rainfall hotspots in the Andes-Amazon transition according to the TRMM precipitation radar and in situ data. Geophys Res Atmos. https://doi.org/10.1002/2016JD026282

    Article  Google Scholar 

  • Chen SH, Sun WY (2002) A one-dimensional time dependent cloud model. J Meteorol Soc Jpn Ser II 80(1):99–118

    Article  Google Scholar 

  • Chevallier P, Pouyaud B, Suarez W, Condom T (2011) Climate change threats to environment in the tropical Andes: glaciers and water resources. Reg Environ Change 11(1):179–187

    Article  Google Scholar 

  • Condom T, Martínez R, Pabón JD, Costa F, Pineda L, Nieto JJ, López F, Villacis M (2020) Climatological and hydrological observations for the South American Andes: in situ stations, satellite, and reanalysis data sets. Front Earth Sci 8:92. https://doi.org/10.3389/feart.2020.00092

    Article  Google Scholar 

  • Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46(20):3077–3107

    Article  Google Scholar 

  • Egger J, Blacutt L, Ghezzi F, Heinrich R, Kolb P, Lämmlein S, Zaratti F (2005) Diurnal circulation of the Bolivian Altiplano Part I: observations. Mon Weather Rev 133:911–924

    Article  Google Scholar 

  • Espinoza JC, Ronchail J, Guyot JL, Cochonneau G, Naziano F, Lavado W, Oliveira ED, Vauchel P (2009) Spatio-temporal rainfall variability in the Amazon basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador). Int J Climatol 29:1574–1594

    Article  Google Scholar 

  • Espinoza JC, Ronchail J, Guyot JL, Junquas C, Vauchel P, Lavado W, Drapeau G, Pombosa R (2011) Climate variability and extreme drought in the upper Solimões River (western Amazon Basin): understanding the exceptional 2010 drought. Geophys Res Lett. https://doi.org/10.1029/2011GL047862

    Article  Google Scholar 

  • Espinoza JC, Chavez S, Ronchail J, Junquas C, Takahashi K, Lavado W (2015) Rainfall hotspots over the southern tropical Andes: Spatial distribution, rainfall intensity, and relations with large-scale atmospheric circulation. Water Resour Res 51(5):3459–3475

    Article  Google Scholar 

  • Espinoza JC, Ronchail J, Marengo JA, Segura H (2019) Contrasting North-South changes in Amazon wet-day and dry-day frequency and related atmospheric features (1981–2017). Clim Dyn 52(9):5413–5430

    Article  Google Scholar 

  • Espinoza JC, Garreaud R, Poveda G, Arias PA, Molina-Carpio J, Masiokas M, Viale M, Scaff L (2020) Hydroclimate of the Andes Part I: main climatic features. Front Earth Sci 8:64

    Article  Google Scholar 

  • Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Oskin M, Burbank D, Alsdorf D (2007) The shuttle radar topography mission. Rev Geophys 45(2):RG2004

    Article  Google Scholar 

  • Favier V, Wagnon P, Chazarin JP, Maisincho L, Coudrain A (2004) One-year measurements of surface heat budget on the ablation zone of Antizana Glacier 15, Ecuadorian Andes. J Geophys Res Atmos. https://doi.org/10.1029/2003JD004359

    Article  Google Scholar 

  • Flores Rojas JL, Moya Alvarez AS, Kumar S, Martínez Castro D, Villalobos Puma E, Silva Vidal FY (2019) Analysis of possible triggering mechanisms of severe thunderstorms in the tropical central Andes of Peru, Mantaro Valley. Atmosphere 10(6):301

    Article  Google Scholar 

  • Funk C, Peterson P, Landsfeld M, Pedreros D, Verdin J, Shukla S, Husak G, Rowland J, Harrison L, Hoell A, Michaelsen J (2015) The climate hazards infrared precipitation with stations-a new environmental record for monitoring extremes. Sci Data 2:150066. https://doi.org/10.1038/sdata.2015.66. http://www.nature.com/articles/sdata201566. http://arxiv.org/abs/1011.1669v3

  • Garreaud RD (1999) Multiscale analysis of the summertime precipitation over the central Andes. Mon Weather Rev 127(5):901–921

    Article  Google Scholar 

  • Garreaud RD (2009) The andes climate and weather. Adv Geosci 22:3–11

    Article  Google Scholar 

  • Giovannettone JP, Barros AP (2009) Probing regional orographic controls of precipitation and cloudiness in the central Andes using satellite data. J Hydrometeorol 10(1):167–182

    Article  Google Scholar 

  • Grell GA, Devenyi D (2002) A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys Res Lett. https://doi.org/10.1029/2002GL015311

    Article  Google Scholar 

  • Grell GA, Freitas SR (2013) A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos Chem Phys Discuss 13(9):23845–23893

    Google Scholar 

  • Heredia MB, Junquas C, Prieur C, Condom T (2018) New statistical methods for precipitation bias correction applied to WRF model simulations in the Antisana region, Ecuador. J Hydrometeorol 19(12):2021–2040

    Article  Google Scholar 

  • Hong SY, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134(9):2318–2341

    Article  Google Scholar 

  • Houze RA (2012) Orographic effects on precipitating clouds. Rev Geophys. https://doi.org/10.1029/2011RG000365

    Article  Google Scholar 

  • Huffman GJ, Bolvin DT, Nelkin EJ, Wolff DB, Adler RF, Gu G, Hong Y, Bowman KP, Stocker EF (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeor 8:38–55

    Article  Google Scholar 

  • Igel AL, Igel MR, van den Heever SC (2015) Make it a double? Sobering results from simulations using single-moment microphysics schemes. J Atmos Sci 72:910–925. https://doi.org/10.1175/JAS-D-14-0107.1

    Article  Google Scholar 

  • Ilbay-Yupa M, Lavado-Casimiro W, Rau P, Zubieta R, Castillón F (2021) Updating regionalization of precipitation in Ecuador. Theoret Appl Climatol 143(3):1513–1528

    Article  Google Scholar 

  • Jiang Q, Smith RB (2003) Cloud timescale and orographic precipitation. J Atmos Sci 60:1543–1559. https://doi.org/10.1175/2995.1

    Article  Google Scholar 

  • Jiménez PA, Dudhia J (2012) Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF model. J Appl Meteorol Climatol 51(2):300–316

    Article  Google Scholar 

  • Junquas C, Takahashi K, Condom T, Espinoza JC, Chavez S, Sicart JE, Lebel T (2018) Understanding the influence of orography on the precipitation diurnal cycle and the associated atmospheric processes in the central Andes. Clim Dyn 50(11):3995–4017

    Article  Google Scholar 

  • Kendon EJ, Prein AF, Senior CA, Stirling A (2021) Challenges and outlook for convection-permitting climate modelling. Phil Trans R Soc A 379(2195):20190547

    Article  Google Scholar 

  • Kummerow C, Simpson J, Thiele O, Barnes W, Chang ATC, Stocker E, Ashcroft P (2000) The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J Appl Meteorol 39:1965–1982

    Article  Google Scholar 

  • Laraque A, Ronchail J, Cochonneau G, Pombosa R, Guyot JL (2007) Heterogeneous distribution of rainfall and discharge regimes in the Ecuadorian Amazon basin. J Hydrometeor 8:1364–1381. https://doi.org/10.1175/2007JHM784.1

    Article  Google Scholar 

  • Mitchell TP, Wallace JM (1992) The annual cycle in equatorial convection and sea surface temperature. J Clim 5(10):1140–1156

    Article  Google Scholar 

  • Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Gerontol Ser A Biol Med Sci 102(D14):16663–16682

    Google Scholar 

  • Mourre L, Condom T, Junquas C, Lebel T, Sicart JE, Figueroa R, Cochachin A (2016) Spatio-temporal assessment of WRF, TRMM and in situ precipitation data in a tropical mountain environment (Cordillera Blanca, Peru). Hydrol Earth Syst Sci 20(1):125–141

    Article  Google Scholar 

  • Moya-Alvarez AS, Martínez-Castro D, Flores JL, Silva Y (2018) Sensitivity study on the influence of parameterization schemes in WRF_ARW model on short-and medium-range precipitation forecasts in the Central Andes of Peru. Adv Meteorol. https://doi.org/10.1155/2018/1381092

    Article  Google Scholar 

  • Niu GY, Yang ZL, Mitchell KE, Chen F, Ek MB, Barlage M, Kumar A, Manning K, Niyogi D, Rosero E, Tewari M, Xia Y (2011) The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J Geophys Res. https://doi.org/10.1029/2010JD015139

    Article  Google Scholar 

  • Ochoa A, Pineda L, Crespo P, Willems P (2014) Evaluation of TRMM 3B42 precipitation estimates and WRF retrospective precipitation simulation over the Pacific-Andean region of Ecuador and Peru. Hydrol Earth Syst Sci 18(8):3179–3193

    Article  Google Scholar 

  • Ochoa A, Campozano L, Sanchez E, Gualan R, Samaniego E (2016) Evaluation of downscaled estimates of monthly temperature and precipitation for a Southern Ecuador case study. Int J Climatol 36(3):1244–1255

    Article  Google Scholar 

  • Paccini L, Espinoza JC, Ronchail J, Segura H (2018) Intra-seasonal rainfall variability in the Amazon basin related to large-scale circulation patterns: a focus on western Amazon-Andes transition region. Int J Clim 38(5):2386–2399

    Article  Google Scholar 

  • Paulson CA (1970) The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J Appl Meteorol 9:857–861

    Article  Google Scholar 

  • Poveda G, Oscar JM, Salazar LF, Arias PA, Moreno HA, Vieira SC, Agudelo PA, Toro VG, Alvarez JF (2005) The diurnal cycle of precipitation in the tropical Andes of Colombia. Mon Weather Rev 133:228–240

    Article  Google Scholar 

  • Poveda G, Espinoza JC, Zuluaga M, Solman S, Garreaud R, van Oevelen PJ (2020) Review paper. High impact weather events in the Andes. Front Earth Sci 8:162. https://doi.org/10.3389/feart.2020.00162

    Article  Google Scholar 

  • Prein AF et al (2015) A review on regional convection-permitting climate modeling: demonstrations, prospects, and challenges. Rev Geophys 53(2):323–361

    Article  Google Scholar 

  • Rabatel A, Francou B, Soruco A, Gomez J, Cáceres B, Ceballos JL, Basantes R, Vuille M, Sicart JE, Huggel C, Scheel M, Lejeune Y, Arnaud Y, Collet M, Condom T, Consoli G, Favier V, Jomelli V, Galarraga R, Ginot P, Maisincho L, Mendoza J, Ménégoz M, Ramirez E, Ribstein P, Suarez W, Villacis M, Wagnon P (2013) Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. Cryosphere 7:81–102

    Article  Google Scholar 

  • Rasmussen KL, Choi SL, Zuluaga MD, Houze RA (2013) TRMM precipitation bias in extreme storms in South America. Geophys Res Lett 40(13):3457–3461

    Article  Google Scholar 

  • Reuder J, Egger J (2006) Diurnal circulation of the South American Altiplano: observations in a valley and at a pass. Tellus A 58:254–262

    Article  Google Scholar 

  • Rossel F, Le Goulven P, Cadier É (1999) Répartition spatiale de l’influence de l’ENSO sur les précipitations annuelles en Equateur. Revue Des Sciences De L’eau/j Water Sci 12(1):183–200

    Article  Google Scholar 

  • Ruiz-Hernández JC, Condom T, Espinoza JC, Junquas C, Ribstein P, Villacis M, Lemoine N, Sicart JE, Rabatel A, Campozano L, Maisincho L, Vera A, Muñoz T (2021) Spatial variability of diurnal to seasonal cycles of precipitation from a high-altitude equatorial Andean valley to the Amazon Basin. J Hydrol: Reg Stud 38:100924. https://doi.org/10.1016/j.ejrh.2021.100924

    Article  Google Scholar 

  • Ruiz-Vásquez M, Arias PA, Martinez JA, Espinoza JC (2020) Effects of Amazon basin deforestation on regional atmospheric circulation and water vapor transport towards tropical South America. Clim Dyn. https://doi.org/10.1007/s00382-020-05223-4

    Article  Google Scholar 

  • Saavedra M, Junquas C, Espinoza JC, Silva Y (2020) Impacts of topography and land use changes on the air surface temperature and precipitation over the central Peruvian Andes. Atmos Res 234:104711

    Article  Google Scholar 

  • Segura H, Junquas C, Espinoza JC, Vuille M, Jauregui YR, Rabatel A, Condom T, Lebel T (2019) New insights into the rainfall variability in the tropical Andes on seasonal and interannual time scales. Clim Dyn 53(1):405–426

    Article  Google Scholar 

  • Sierra JP, Junquas C, Espinoza JC, Segura H, Condom T, Andrade M, Molina-Carpio J, Ticona L, Mardoñez V, Blacutt L, Polcher J, Rabatel A, Sicart JE (2021) Deforestation impacts on Amazon-Andes hydroclimatic connectivity. Clim Dyn. https://doi.org/10.1007/s00382-021-06025-y

    Article  Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang XY, Wang W, Powers JG (2008) A description of the advanced research WRF version 3. NCAR Technical Note NCAR/TN-475+STR

  • Sulca J, Takahashi K, Espinoza JC, Vuille M, Lavado-Casimiro W (2018) Impacts of different ENSO flavors and tropical Pacific convection variability (ITCZ, SPCZ) on austral summer rainfall in South America, with a focus on Peru. Int J Climatol 38(1):420–435

    Article  Google Scholar 

  • Thompson G, Field PR, Rasmussen RM, Hall WD (2008) Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: implementation of a new snow parameterization. Mon Weather Rev 136(12):5095–5115

    Article  Google Scholar 

  • Trachte K, Rollenbeck R, Bendix J (2010a) Nocturnal convective cloud formation under clear-sky conditions at the eastern Andes of south Ecuador. J Geophys Res 115:D24203

    Google Scholar 

  • Trachte K, Nauss T, Bendix J (2010b) The impact of different terrain configurations on the formation and dynamics of katabatic flows: idealised case studies. Bound Layer Meteorol 134:307–325

    Article  Google Scholar 

  • Trachte K, Seidel J, Figueroa R, Otto M, Bendix J (2018) Cross-Scale precipitation variability in a semiarid catchment area on the western slopes of the central Andes. J Appl Meteorol Climatol 57(3):675–694

    Article  Google Scholar 

  • Vázquez-Patiño A, Campozano L, Ballari D, Córdova M, Samaniego E (2020) Virtual control volume approach to the study of climate causal flows: identification of humidity and wind pathways of influence on rainfall in Ecuador. Atmosphere 11(8):848

    Article  Google Scholar 

  • Vera C, Higgins W, Amador J, Ambrizzi T, Garreaud R, Gochis D, Gutzler D, Lettenmaier D, Marengo J, Mechoso CR, NoguesPaegle J, Dias PLS, Zhang C (2006) Toward a unified view of the American monsoon systems. J Clim 19(20):4977–5000

    Article  Google Scholar 

  • Vicente-Serrano SM, Aguilar E, Martínez R, Martín-Hernández N, Azorin-Molina C, Sanchez-Lorenzo A, El Kenawy A, TomásBurguera M, Moran-Tejeda E, López-Moreno JI, Revuelto J, Beguería S, Nieto JJ, Drumond A, Gimeno L, Nieto R (2017) The complex influence of ENSO on droughts in Ecuador. Clim Dyn 48(1–2):405–427

    Article  Google Scholar 

  • Vuille M, Bradley RS, Keimig F (2000) Climate variability in the andes of ecuador and its relation to tropical Pacific and Atlantic sea surface temperature anomalies. J Clim 13:2520–2535

    Article  Google Scholar 

  • Vuille M, Carey M, Huggel C, Buytaert W, Rabatel A, Jacobsen D, Soruco A, Villacis M, Yarleque C, Elison Timm O, Condom T, Salzmann N, Sicart JE (2018) Rapid decline of snow and ice in the tropical Andes-Impacts, uncertainties and challenges ahead. Earth Sci Rev 176:195–213

    Article  Google Scholar 

  • Wagnon P, Lafaysse M, Lejeune Y, Maisincho L, Rojas M, Chazarin JP (2009) Understanding and modeling the physical processes that govern the melting of snow cover in a tropical mountain environment in Ecuador. J Geophys Res Atmos. https://doi.org/10.1029/2009JD012292

    Article  Google Scholar 

  • Wallace JM, Hobbs PV (2006) Atmospheric science: an introductory survey, vol 92, 2nd edn. Academic press, 505 pp

  • Whiteman CD (2000) Mountain meteorology. Fundamentals and applications. Oxford University Press, Oxford

    Book  Google Scholar 

  • WMO (2007) Guide to the Global Observing System. WMO-No. 488:170, ISBN: 92-63-13488-3

  • WMO (2015) Updated in 2018 Manual on the Global Telecommunication System. Annex III to the WMO technical regulations. WMO-No. 386:200, ISBN: 978-92-63-10386-4

  • Yang ZL, Niu GY, Mitchell KE, Chen F, Ek MB, Barlage M, Manning K, Niyogi D, Tewari M, Xia YL (2011) The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins. J Geophys Res 116:1–16. https://doi.org/10.1029/2010JD015140

    Article  Google Scholar 

  • Zängl G, Egger J (2005) Diurnal circulation of the Bolivian Altiplano. Part II: theoretical and model investigations. Mon Weather Rev 133:3624–3643

    Article  Google Scholar 

  • Zardi D, Whiteman CD (2013) Diurnal mountain wind systems. Mountain weather research and forecasting. Springer, Netherlands, pp 35–119

    Chapter  Google Scholar 

Download references

Acknowledgements

This research was partly funded by the French AMANECER-MOPGA project funded by ANR and IRD (ref. ANR-18-MPGA-0008). The co-author M.B.H. was funded by the IRD program LMI GREATICE and the OSUG@2020 labex. The simulations presented in this paper were performed using the Froggy platform of the CIMENT infrastructure (https://ciment.ujf-grenoble.fr), which is supported by the Rhône-Alpes region (GRANT CPER07_13 CIRA), the OSUG@2020 labex (reference ANR10 LABX56), and the Equip@Meso project (reference ANR-10- EQPX-29-01) of the programme Investissements d’Avenir supervised by the Agence Nationale pour la Recherche. The authors thank Miguel Saavedra (IGP, Peru) for SRTM data, Sly Wongchuig (IGE) for helping with Fig. 1c, and INAMHI (Ecuador), EPMAPS (Ecuador), FONAG (Ecuador), Luis Maisincho and the Service National d’Observation GLACIOCLIM (CNRS-INSU, IRD, IPEV, INRAE, UGA) for the in situ stations data. The authors also thank Jennie Thomas, Nicolas Jourdain, Juan Pablo Sierra and other colleagues of IGE for exchange of ideas that have improved the quality of the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Junquas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1106 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Junquas, C., Heredia, M.B., Condom, T. et al. Regional climate modeling of the diurnal cycle of precipitation and associated atmospheric circulation patterns over an Andean glacier region (Antisana, Ecuador). Clim Dyn 58, 3075–3104 (2022). https://doi.org/10.1007/s00382-021-06079-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-021-06079-y

Keywords

Navigation