Skip to main content

Advertisement

Log in

Representing rainfall extremes over the Indo-Gangetic Plains using CORDEX-CORE simulations

  • Original Article
  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The Indo-Gangetic Plain (IGP), which is the site of India's Green Revolution, covers almost 15% of the country's landmass and is among the most extensively fertile lands across the world. The densely populated IGP region bears great importance for the socioeconomic facets of India and contributes to a major share of the GDP of the country. The present study demonstrates the regional-specific assessment of summer monsoon precipitation and associated extremes with dynamical and thermodynamical aspects over the IGP region using high-resolution regional climate models (RCMs) under the CORDEX-CORE framework. The analysis reveals that the eastern parts of the IGP receive low-to-moderate precipitation with a higher tail than the western parts, which is due to the direction of the monsoon low-level flow. The observed mean precipitation characteristics are well represented by the RCMs. Further, the research identifies extreme precipitation events over the IGP and conducts comprehensive analysis to understand their underlying mechanisms. It has been observed that extreme precipitation events are linked with the moisture transport associated with trough activity and instability, and RCMs are capable in representing the observed precipitation extremes and underlying mechanisms at localized scales. Overall, this study represents a significant step forward in understanding the evolution of spatio-temporal variability of precipitation over the IGP region, where agriculture is a major economic activity and millions of people depend on rainfed agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability statement

The datasets generated during and/or analysed during the current study are available from the corresponding author upon reasonable request.

References

  • Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419(6903):224–232

    Article  CAS  PubMed  ADS  Google Scholar 

  • Asharaf S, Ahrens B (2015) Indian summer monsoon rainfall processes in climate change scenarios. J Clim 28(13):5414–5429

    Article  ADS  Google Scholar 

  • Ashfaq M, Cavazos T, Reboita MS, Torres-Alavez JA, Im E-S, Olusegun CF, Alves L, Key K, Adeniyi MO, Tall M (2021) Robust late twenty-first century shift in the regional monsoons in RegCM-CORDEX simulations. Clim Dyn 57:1463–1488

    Article  Google Scholar 

  • Bajrang C, Attada R, Goswami BN (2023) Possible factors for the recent changes in frequency of central Indian Summer Monsoon precipitation extremes during 2005–2020. Npj Clim Atmos Sci 6(1):120

    Article  ADS  Google Scholar 

  • Baldauf M, Seifert A, Förstner J, Majewski D, Raschendorfer M, Reinhardt T (2011) Operational convective-scale numerical weather prediction with the COSMO model: description and sensitivities. Mon Weather Rev 139(12):3887–3905

    Article  ADS  Google Scholar 

  • Bentsen M, Bethke I, Debernard JB, Iversen T, Kirkevåg A, Seland Ø, Drange H, Roelandt C, Seierstad IA, Hoose C (2013) The Norwegian Earth System Model, NorESM1-M–Part 1: description and basic evaluation of the physical climate. Geosci Model Dev 6:687–720

    Article  ADS  Google Scholar 

  • Bhatla R, Singh M, Mall R, Tripathi A, Raju P (2015) Variability of summer monsoon rainfall over Indo-Gangetic Plains in relation to El-Nino/La-Nina. Nat Hazards 78:837–853

    Article  Google Scholar 

  • Bhatla R, Ghosh S, Mandal B, Mall R, Sharma K (2016) Simulation of Indian summer monsoon onset with different parameterization convection schemes of RegCM-4.3. Atmos Res 176:10–18

    Article  Google Scholar 

  • Bhatla R, Ghosh S, Mall R, Sinha P, Sarkar A (2018) Regional climate model performance in simulating intra-seasonal and interannual variability of Indian summer monsoon. Pure Appl Geophys 175(10):3697–3718

    Article  ADS  Google Scholar 

  • Bhatla R, Verma S, Ghosh S, Mall RK (2019a) Performance of regional climate model in simulating Indian summer monsoon over Indian homogeneous region. Theor Appl Clim 176:1–15

    Google Scholar 

  • Bhatla R, Verma S, Pandey R et al (2019b) Evolution of extreme rainfall events over indo-gangetic plain in changing climate during 1901–2010. J Earth Syst Sci 128:1–14

    Article  Google Scholar 

  • Bhatla R, Varma P, Verma S, Ghosh S (2020) El Nino/La Nina impact on crop production over different agroclimatic zones of Indo-Gangetic Plain of India. Theor Appl Climatol 142:151–163

  • Bollasina M, Nigam S (2011) The summertime “heat” low over Pakistan/northwestern India: evolution and origin. Clim Dyn 37:957–970

  • Bretherton CS (2006) Moisture transport, lower-tropospheric stability, and decoupling of cloud-topped boundary layers. J Atmos Sci 63(9):2436–2451

    Google Scholar 

  • Chaturvedi RK, Joshi J, Jayaraman M, Bala G, Ravindranath NH (2012) Multi-model climate change projections for India under representative concentration pathways. Curr Sci 103(8):791–802

    Google Scholar 

  • Chauhan BS, Mahajan G, Randhawa RK, Singh H, Kang MS (2014) Global warming and its possible impact on agriculture in India. Adv Agron 123:65–121

    Article  Google Scholar 

  • Choudhary A, Dimri AP (2018) Assessment of CORDEX-South Asia experiments for monsoonal precipitation over Himalayan region for future climate. Clim Dyn 50:3009–3030

    Article  Google Scholar 

  • Choudhary A, Dimri AP (2019) On bias correction of summer monsoon precipitation over India from CORDEX-SA simulations. Int J Climatol 39(3):1388–1403

    Article  Google Scholar 

  • Choudhury G, Tyagi B, Vissa NK, Singh J, Sarangi C, Tripathi SN, Tesche M (2020) Aerosol-enhanced high precipitation events near the Himalayan foothills. Atmos Chem Phys 20(23):15389–15399

    Article  CAS  ADS  Google Scholar 

  • Dudhia J (1993) A nonhydrostatic version of the Penn State-NCAR mesoscale model: validation tests. Mon Weather Rev 121:1493–1513

    Article  ADS  Google Scholar 

  • Endo H, Kitoh A (2014) Thermodynamic and dynamic effects on regional monsoon rainfall changes in a warmer climate. Geophys Res Lett 41(5):1704–1711

    Article  ADS  Google Scholar 

  • Fadhel S, Rico-Ramirez MA, Han D (2018) Sensitivity of peak flow to the change of rainfall temporal pattern due to warmer climate. J Hydrol 560:546–559

    Article  Google Scholar 

  • Fan J, Rosenfeld D, Yang Y, Zhao C, Leung LR, Li Z (2015) Substantial contribution of anthropogenic air pollution to catastrophic floods in Southwest China. Geophys Res Lett 42(14):6066–6075

    Article  ADS  Google Scholar 

  • Field CB, Barros V, Stocker TF, Dahe Q (eds) (2012) Managing the risks of extreme events and disasters to advance climate change adaptation: special report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Freychet N, Hsu HH, Chou C, Wu CH (2015) Asian summer monsoon in CMIP5 projections: A link between the change in extreme precipitation and monsoon dynamics. J Clim 28(4):1477–1493

    Article  ADS  Google Scholar 

  • Gadgil S (2003) The Indian monsoon and its variability. Annual Rev Earth Planet Sci 31:429–467. https://doi.org/10.1146/annurev.earth.31.100901.141251

    Article  CAS  ADS  Google Scholar 

  • Gadgil S, Rupa Kumar K (2006) The Asian monsoon—agriculture and economy. The Asian Monsoon, Springer, Berlin Heidelberg, Cham, pp 651–683

    Book  Google Scholar 

  • Ghosh S, Bhatla R, Mall R, Srivastava PK, Sahai A (2019) Aspect of ECMWF downscaled Regional Climate Modeling in simulating Indian summer monsoon rainfall and dependencies on lateral boundary conditions. Theor Appl Climatol 135:1559–1581

    Article  ADS  Google Scholar 

  • Ghosh S, Sinha P, Bhatla R, Mall RK, Sarkar A (2022) Assessment of Lead-Lag and Spatial Changes in simulating different epochs of the Indian summer monsoon using RegCM4. Atmos Res 265:105892. https://doi.org/10.1016/j.atmosres.2021.105892

    Article  CAS  Google Scholar 

  • Ghosh S, Sarkar A, Bhatla R, Mall RK, Payra S, Gupta P (2023) Changes in the mechanism of the South-Asian summer monsoon onset propagation induced by the pre-monsoon aerosol dust storm. Atmos Res 294:106980

    Article  Google Scholar 

  • Giorgi F, Gutowski WJ Jr (2015) Regional dynamical downscaling and the CORDEX initiative. Annu Rev Environ Resour 40:467–490

    Article  Google Scholar 

  • Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: The CORDEX framework. World Meteorol Org Bull 58(3):175–183

    Google Scholar 

  • Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla MB, Bi X, Brankovic C (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29

    Article  Google Scholar 

  • Giorgi F, Coppola E, Teichmann C, Jacob D (2021) Editorial for the CORDEX-CORE experiment I special issue. Clim Dyn 57(5–6):1265–1268

    Article  Google Scholar 

  • Goswami BN, Venugopal V, Sengupta D, Madhusoodanan M, Xavier PK (2006) Increasing trend of extreme rain events over India in a warming environment. Science 314(5804):1442–1445

    Article  CAS  PubMed  ADS  Google Scholar 

  • Goswami, B. N. (2005) South Asian monsoon: intraseasonal variability. In The Asian monsoon (pp. 125–166) Springer, Berlin, Heidelberg.

  • Groisman PY, Knight RW, Karl TR, Easterling DR, Sun B, Lawrimore JH (2005) Contemporary changes of the hydrological cycle over the contiguous United States: trends derived from in situ observations. J Hydrometeorol 5:64–85

    Article  ADS  Google Scholar 

  • Gusain A, Ghosh S, Karmakar S (2020) Added value of CMIP6 over CMIP5 models in simulating Indian summer monsoon rainfall. Atmos Res 232:104680

    Article  Google Scholar 

  • Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, Thépaut JN (2020) The ERA5 global reanalysis. Quart J R Meteorol Soc 146(730):1999–2049

    Article  ADS  Google Scholar 

  • Holton JR (2004) An Introduction to Dynamic Meteorology, Academic Press, International Geophysics Series Volume 88, Fourth Edition, 535 p., ISBN 0–12–354015–1, ISBN 978–0–12–354015–7

  • Intergovernmental Panel on Climate Change (IPCC) (2013) In: Stocker TF et al (Eds) Climate change (2013): the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Jacob D, Elizalde A, Haensler A, Hagemann S, Kumar P, Podzun R, Wilhelm C (2012) Assessing the transferability of the regional climate model REMO to different coordinated regional climate downscaling experiment (CORDEX) regions. Atmosphere 3(1):181–199

    Article  ADS  Google Scholar 

  • Joseph S, Sahai A, Sharmila S, Abhilash S, Borah N, Chattopadhyay R, Pillai P, Rajeevan M, Kumar A (2015) North Indian heavy rainfall event during June 2013: diagnostics and extended range prediction. Clim Dyn 44:2049–2065

    Article  Google Scholar 

  • Gutowski JrJ, Giorgi F, Timbal B, Frigon A, Jacob D, Kang, HS, Santer, B (2016) WCRP CORDEX: Science and regional climate downscaling. In Climate Vulnerability (pp. 29–50) Academic Press

  • Kale VS (2003) Geomorphic effects of monsoon floods on Indian rivers. Nat Hazards 28:65–84

    Article  Google Scholar 

  • Kang IS, Yang YM, Tao WK (2015) GCMs with implicit and explicit representation of cloud microphysics for simulation of extreme precipitation frequency. Clim Dyn 45(1–2):325–335

    Article  Google Scholar 

  • Kumar P, Wiltshire A, Mathison C, Asharaf S, Ahrens B, Lucas-Picher et al. (2013) Downscaled climate change projections with uncertainty assessment over India using a high resolution multi-model approach. Sci Total Environ 468:S18–S30

  • Lee D, Min SK, Jin J, Lee JW, Cha DH, Suh MS, Joh M (2017) Thermodynamic and dynamic contributions to future changes in summer precipitation over Northeast Asia and Korea: a multi-RCM study. Clim Dyn 49:4121–4139

    Article  Google Scholar 

  • Leena PP, Sanket BR, Kumar VA et al (2022) Observed features of monsoon low-level jet and its relationship with rainfall activity over a high-altitude site in Western Ghats, India. Theor Appl Climatol 150:551–565

    Article  ADS  Google Scholar 

  • Maharana P, Dimri AP (2014) Simulation of the Indian summer monsoon precipitation using RegCM4: Sensitivity to convective schemes. Theoret Appl Climatol 118(1–2):277–295

    Google Scholar 

  • Maharana P, Dimri AP (2016) Simulating Indian summer monsoon with RegCM4: model configuration and resolution study. J Earth Syst Sci 125(2):249–266

    Google Scholar 

  • Maharana P, Pattnaik S, Ramesh KJ (2019) Improved Indian summer monsoon simulation by RegCM4 6 for the present climate. Int J Climatol 39(2):811–828. https://doi.org/10.1002/joc.5847

    Article  Google Scholar 

  • Maharana P, Kumar D, Das S, Tiwari PR (2021) Present and future changes in precipitation characteristics during Indian summer monsoon in CORDEX-CORE simulations. Int J Climatol 41(3):2137– 2153

  • Maity R, Aggarwal A, Chanda K (2016) Do CMIP5 models hint at a warmer and wetter India in the 21st century? J Water Clim Change 7(2):280–295

    Article  Google Scholar 

  • Maloney ED (2009) The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J Clim 22(3):711–729

    Article  MathSciNet  ADS  Google Scholar 

  • Mishra V, Shah HL (2018) Hydroclimatological perspective of the Kerala flood of 2018. J Geol Soc India 92(5):645–650

    Article  Google Scholar 

  • Mishra AK, Kumar P, Dubey AK, Tiwari G, Sein DV (2022) Impact of air–sea coupling on the simulation of Indian summer monsoon using a high-resolution Regional Earth System Model over CORDEX-SA. Clim Dyn 59(9–10):3013–3033

    Article  Google Scholar 

  • Mukhopadhyay P, Nanjundiah RS (2018) Representation of physical processes in weather and climate models. Curr Sci 114:1155

    Article  Google Scholar 

  • Nayak S, Takemi T (2019) Dependence of extreme precipitable water events on temperature. Atmósfera 32(2):159–165

    Article  Google Scholar 

  • New M, Rahiz M, Karmacharya J (2012) Climate change in Indo-Gangetic agriculture: Recent trends, current projections, crop-climate suitability, and prospects for improved climate model information. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Copenhagen, Denmark, 3–18

  • Nikumbh AC, Chakraborty A, Bhat GS (2019) Recent spatial aggregation tendency of rainfall extremes over India. Sci Rep 9(1):10321

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Pai D, Rajeevan M, Sreejith O, Mukhopadhyay B, Satbha N (2014) Development of a new high spatial resolution (0.25× 0.25) long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. Mausam 65(1):1–18

    Article  Google Scholar 

  • Pal JS, Giorgi F, Bi X, Elguindi N, Solmon F, Gao X, Ashfaq M (2007) Regional climate modeling for the developing world: the ICTP RegCM3 and RegCNET. Bull Am Meteorol Soc 88(9):1395–1410

    Article  ADS  Google Scholar 

  • Pal D, Bhattacharyya T, Srivastava P, Chandran P, Ray S (2009) Soils of the Indo-Gangetic Plains: their historical perspective and management. Curr Sci 96:1193–1202

    CAS  Google Scholar 

  • Pant M, Ghosh S, Verma S, Sinha P, Mall RK, Bhatla R (2022) Simulation of an extreme rainfall event over Mumbai using a regional climate model a case study. Meteorol Atmos Phys. https://doi.org/10.1007/s00703-021-00845-7

    Article  Google Scholar 

  • Pant M, Bhatla R, Ghosh S et al (2023a) Will warming climate affect the characteristics of summer monsoon rainfall and associated extremes over the Gangetic Plains in India? Earth Space Sci 10(2):e2022EA002741

    Article  ADS  Google Scholar 

  • Pant M, Bhatla R, Ghosh S, Das S, Mall RK (2023b) How climate change is affecting the summer monsoon extreme rainfall pattern over the Indo-Gangetic Plains of India: present and future perspectives. Clim Dyn 62:1–21

    Google Scholar 

  • Prakash S, Mitra AK, Momin IM, Pai DS, Rajagopal EN, Basu S (2015) Comparison of TMPA-3B42 versions 6 and 7 precipitation products with gauge-based data over India for the southwest monsoon period. J Hydrometeorol 16(1):346–362

    Article  ADS  Google Scholar 

  • Rajeevan M, Bhate J, Jaswal AK (2008) Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data. Geophys Res Lett. https://doi.org/10.1029/2008GL035143

    Article  Google Scholar 

  • Ramesh KV, Goswami P (2014) Assessing reliability of regional climate projections: the case of Indian monsoon. Sci Rep 4(1):4071

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Rana A, Nikulin G, Kjellström E, Strandberg G, Kupiainen M, Hansson U, Kolax M (2020) Contrasting regional and global climate simulations over South Asia. Clim Dyn 54:2883–2901

    Article  Google Scholar 

  • Rani SI, Arulalan T, George JP, Rajagopal EN, Renshaw R, Maycock A, Barker DM, Rajeevan M (2021) IMDAA: High-resolution satellite-era reanalysis for the Indian monsoon region. J Clim 34:5109–5133

    ADS  Google Scholar 

  • Remedio AR, Teichmann C, Buntemeyer L, Sieck K, Weber T, Rechid D, Jacob D (2019) Evaluation of new CORDEX simulations using an updated Köppen-Trewartha climate classification. Atmosphere 10(11):726

    Article  ADS  Google Scholar 

  • Rogelj J, Forster PM, Kriegler E, Smith CJ, Séférian R (2019) Estimating and tracking the remaining carbon budget for stringent climate targets. Nature 571:335–342

    Article  CAS  PubMed  ADS  Google Scholar 

  • Roxy MK, Ghosh S, Pathak A, Athulya R, Mujumdar M, Murtugudde R, Rajeevan M (2017) A threefold rise in widespread extreme rain events over central India. Nat Commun 8(1):1–11

    Article  CAS  Google Scholar 

  • Saha U, Sateesh M (2022) Rainfall extremes on the rise: Observations during 1951–2020 and bias-corrected CMIP6 projections for near-and late 21st century over Indian landmass. J Hydrol 608:127682

    Article  Google Scholar 

  • Sanjay J, Krishnan R, Shrestha AB, Rajbhandari R, Ren GY (2017) Downscaled climate change projections for the Hindu Kush Himalayan region using CORDEX South Asia regional climate models. Adv Clim Chang Res 8(3):185–198

    Article  Google Scholar 

  • Sanjay J, Ramarao MVS, Mahesh R, Ingle S, Singh BB, & Krishnan R (2020) Regional climate change datasets for South Asia. arXiv preprint arXiv:2012.10387.

  • Schneider T, Bischoff T, Haug GH (2014) Migrations and dynamics of the intertropical convergence zone. Nature 513(7516):45–53

    Article  CAS  PubMed  ADS  Google Scholar 

  • Shahi NK, Rai S (2023) An increase in widespread extreme precipitation events during the northeast monsoon season over south peninsular India. Sci Rep 13:22757. https://doi.org/10.1038/s41598-023-50324-9

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Shahi NK, Rai S, Mishra N (2018) Southern Indian Ocean SST as a modulator for the progression of Indian summer monsoon. Theor Appl Climatol 131:705–717

    Article  ADS  Google Scholar 

  • Shahi NK, Das S, Ghosh S, Maharana P, Rai S (2021) Projected changes in the mean and intra-seasonal variability of the Indian summer monsoon in the RegCM CORDEX-CORE simulations under higher warming conditions. Clim Dyn 57:1489–1506

    Article  Google Scholar 

  • Shahi NK, Polcher J, Bastin S, Pennel R, Fita L (2022) Assessment of the spatio-temporal variability of the added value on precipitation of convection-permitting simulation over the Iberian Peninsula using the RegIPSL regional earth system model. Clim Dyn 59(1–2):471–498

    Article  Google Scholar 

  • Sharmila S, Pillai PA, Joseph S, Roxy M, Krishna RPM, Chattopadhyay R, Goswami BN (2013) Role of ocean–atmosphere interaction on northward propagation of Indian summer monsoon intra-seasonal oscillations (MISO). Clim Dyn 41:1651–1669

    Article  Google Scholar 

  • Sharmila S, Joseph S, Sahai A, Abhilash S, Chattopadhyay R (2015) Future projection of Indian summer monsoon variability under climate change scenario: an assessment from CMIP5 climate models. Global Planet Change 124:62–78

    Article  ADS  Google Scholar 

  • Singh M, Bhatla R (2020) Intense rainfall conditions over Indo-Gangetic Plains under the influence of Madden–Julian Oscillation. Meteorol Atmos Phys 132:441–449

    Article  ADS  Google Scholar 

  • Singh V, Goyal MK (2016) Analysis and trends of precipitation lapse rate and extreme indices over north Sikkim eastern Himalayas under CMIP5ESM-2M RCPs experiments. Atmos Res 167:34–60

    Article  Google Scholar 

  • Singh N, Sontakke N (2002) On climatic fluctuations and environmental changes of the Indo-Gangetic Plains, India. Clim Chang 52:287–313

    Article  Google Scholar 

  • Singh S, Ghosh S, Sahana A, Vittal H, Karmakar S (2017) Do dynamic regional models add value to the global model projections of Indian monsoon? Clim Dyn 48(3):1375–1397

    Article  Google Scholar 

  • Sinha P, Mohanty UC, Kar SC, Dash SK, Kumari S (2013) Sensitivity of the GCM driven summer monsoon simulations to cumulus parameterization schemes in nested RegCM3. Theor Appl Climatol 112:285–306

    Article  ADS  Google Scholar 

  • Sobel A, Wang S, Kim D (2014) Moist static energy budget of the MJO during DYNAMO. J Atmos Sci 71(11):4276–4291

    Article  ADS  Google Scholar 

  • Sooraj KP, Terray P, Shilin A, Mujumdar M (2020) Dynamics of rainfall extremes over India: a new perspective. Int J Climatol 40(12):5223–5245

    Article  Google Scholar 

  • Sørland SL, Brogli R, Pothapakula PK, Russo E, Van de Walle J, Ahrens B, Thiery W (2021) COSMO-CLM regional climate simulations in the Coordinated Regional Climate Downscaling Experiment (CORDEX) framework: a review. Geosci Model Dev 14(8):5125–5154

    Article  ADS  Google Scholar 

  • Taniguchi K, Koike T (2006) Comparison of definitions of Indian summer monsoon onset: better representation of rapid transitions of atmospheric conditions. Geophys Res Lett. https://doi.org/10.1029/2005GL024526

    Article  Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106(D7):7183–7192

    Article  ADS  Google Scholar 

  • Teichmann C, Jacob D, Remedio AR et al (2021) Assessing mean climate change signals in the global CORDEX-CORE ensemble. Clim Dyn 57:1269–1292. https://doi.org/10.1007/s00382-020-05494-x

    Article  Google Scholar 

  • Thompson DW, Wallace JM (1998) The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25(9):1297–1300

    Article  ADS  Google Scholar 

  • Trenberth KE, Dai A, Rasmussen RM, Parsons DB (2003) The changing character of precipitation. Bull Am Meteor Soc 84(9):1205–1218

    Article  ADS  Google Scholar 

  • Varikoden H, Mujumdar M, Revadekar JV, Sooraj KP, Ramarao MVS, Sanjay J, Krishnan R (2018) Assessment of regional downscaling simulations for long term mean, excess and deficit Indian Summer Monsoons. Global Planet Change 162:28–38

    Article  ADS  Google Scholar 

  • Verma S, Bhatla R, Ghosh S, Sinha P, Kumar Mall R, Pant M (2021) Spatio-temporal variability of summer monsoon surface air temperature over India and its regions using Regional Climate Model. Int J Climatol 41:5820–5842

    Article  Google Scholar 

  • Verma A, Rakhecha PR, Yadav RK (2022a) Improved simulation of Indian Summer Monsoon Rainfall with the CORDEX South Asia Regional Climate Models. Pure Appl Geophys 179(2):613–632. https://doi.org/10.1007/s00024-021-02733-x

    Article  Google Scholar 

  • Verma S, Bhatla R, Shahi NK, Mall RK (2022b) Regional modulating behavior of Indian summer monsoon rainfall in context of spatio-temporal variation of drought and flood events. Atmos Res 274:106201

    Article  Google Scholar 

  • Verma S, Bhatla R, Singh PK (2023) Understanding the association of tropical SST anomalies on the ISMR during extreme IOD events. Pure Appl Geophys. https://doi.org/10.1007/s00024-023-03394-9

    Article  Google Scholar 

  • Vittal H et al (2016) Lack of dependence of indian summer monsoon rainfall extremes. Sci Rep. https://doi.org/10.1038/srep31039

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang C, Kim D, Ekman AM, Barth MC, Rasch PJ (2009) Impact of anthropogenic aerosols on Indian summer monsoon. Geophys Res Lett. https://doi.org/10.1029/2009GL040114

    Article  Google Scholar 

  • Wang B (2006) The Asian Monsoon. Springer Science & Business Media

  • Webster PJ, Yang S (1992) Monsoon and ENSO: Selectively interactive systems. Q J R Meteorol Soc 118(507):877–926

    Article  ADS  Google Scholar 

  • Woo S, Singh GP, Oh JH, Lee KM (2019) Projection of seasonal summer precipitation over Indian sub-continent with a high-resolution AGCM based on the RCP scenarios. Meteorol Atmos Phys 131:897–916

    Article  ADS  Google Scholar 

  • Xu Y, Ramanathan V, Victor DG (2018) Global warming will happen faster than we think. Nature 564:30–32

    Article  CAS  PubMed  ADS  Google Scholar 

  • Yaduvanshi A, Ranade A (2017) Long-term rainfall variability in the eastern gangetic plain in relation to global temperature change. Atmos Ocean 55(2):94–109

    Article  CAS  ADS  Google Scholar 

  • Yu L, Wu S, Ma Z (2019) Evaluation of moist static energy in a simulated tropical cyclone. Atmosphere 10(6):319

    Article  ADS  Google Scholar 

  • Zheng T, Feng T, Xu K, Cheng X (2020) Precipitation and the associated moist static energy budget off western Australia in conjunction with Ningaloo Niño. Front Earth Sci 8:597915

    Article  Google Scholar 

Download references

Acknowledgements

The present study forms a component of MP’s doctoral dissertation and has received support from a R&D project funded by the DST, Govt. of India. The authors wish to extend their appreciation to the two anonymous reviewers for their valuable suggestions, which greatly improved the quality of this manuscript. RB also acknowledges the IOE grant under Dev. Scheme 6031(A). The authors would like to express their gratitude to the WCRP community for initiating the CORDEX project. Authors are also thankful to the IMD, ECMWF and GERICS for providing the data utilized in this study.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

This paper is conceptualized by MP, NKS and RB which is further designed by MP and NKS. Authors MP, NKS and RB further developed the research plan. AR provided the REMO simulated data sets. MP and NKS did the data processing and the analyses under the guidance of RB and AR. MP wrote the first draft, which was subsequently modified by NKS and AR. RB, RKM and SS supervised the research work. The manuscript has been thoroughly reviewed by all the authors, who have contributed their expertise to enhance the quality of the work and have given their approval by accepting the authors' agreement.

Corresponding author

Correspondence to R. Bhatla.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pant, M., Shahi, N.K., Remedio, A.R. et al. Representing rainfall extremes over the Indo-Gangetic Plains using CORDEX-CORE simulations. Clim Dyn (2024). https://doi.org/10.1007/s00382-023-07095-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00382-023-07095-w

Keywords

Navigation