Skip to main content
Log in

Use of atmospheric tides to estimate the hydraulic conductivity of confined and semi-confined aquifers

Utilisation des marées atmosphériques pour estimer la conductivité hydraulique des aquifères confinés et semi-confinés

Utilización de las mareas atmosféricas para estimar la conductividad hidráulica en acuíferos confinados y semiconfinados

利用大气潮汐估计承压和半承压含水层的渗透系数

Uso de marés atmosféricas para estimar a condutividade hidráulica de aquíferos confinados e semiconfinados

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Characterizing groundwater responses to natural drivers is cost effective and offers great potential in hydrogeological investigations. However, there is a lack of method development and evaluation, for example by comparing results with those derived from using conventional methods. This paper presents a modified method to calculate the hydraulic conductivity (K) of confined aquifers using the well water response to atmospheric tides. The approach separates the Earth and atmospheric tide influences on filtered well water-level records in the time domain. The resulting ill-posed regression deconvolution problem can be overcome by constraining the well water response to atmospheric tides in order to follow a physically realistic semi-diurnal barometric response function (S2-BRF), or to follow directly a modified hydraulic model (BE-Hvorslev) similar to a slug test evaluation. An analysis with synthetic data shows that K up to 10-4 m/s can be estimated when pressure records with short sampling intervals are available. Application to a field dataset from Cambodia and Benin, with 20-minute to 60-minute sampling intervals, respectively, results in K values of 5.82∙10-7 m/s and 2.9·10-7 m/s. This agrees with results independently derived from pumping tests for both confined sediments and semi-confined hard-rock conditions. This method offers a promising and low-cost approach to derive K solely from monitoring datasets in confined aquifers. This is especially advantageous for low-conductivity formations where hydraulic testing takes time.

Resumen

La caracterización de las respuestas de las aguas subterráneas a los impulsores naturales es poco costosa y ofrece un gran potencial en las investigaciones hidrogeológicas. Sin embargo, faltan el desarrollo y la evaluación de métodos, por ejemplo comparando los resultados con los derivados del uso de métodos convencionales. Este artículo presenta un método modificado para calcular la conductividad hidráulica (K) de acuíferos confinados utilizando la respuesta del agua en pozos a las mareas atmosféricas. El enfoque separa las influencias de las mareas terrestres y atmosféricas en los registros de nivel de agua de pozo en el dominio temporal. El problema resultante de deconvolución por regresión mal planteado puede superarse restringiendo la respuesta del agua del pozo a las mareas atmosféricas para que siga una función de respuesta barométrica semidiurna físicamente realista (S2-BRF), o para que siga directamente un modelo hidráulico modificado (BE-Hvorslev) similar a una evaluación de slug test. Un análisis con datos sintéticos muestra que se puede estimar K hasta 10-4 m/s cuando se dispone de registros de presión con intervalos de muestreo cortos. La aplicación a un conjunto de datos de campo de Camboya y Benín, con intervalos de muestreo de 20 a 60 minutos, respectivamente, da como resultado valores de K de 5.82∙10-7 m/s y 2.9-10-7 m/s. Esto concuerda con los resultados derivados independientemente de los ensayos de bombeo tanto para sedimentos confinados como para condiciones semiconfinadas de roca dura. Este método ofrece un enfoque prometedor y de bajo coste para derivar K únicamente a partir de conjuntos de datos de monitoreo en acuíferos confinados. Esto es especialmente ventajoso para formaciones de baja conductividad en las que las pruebas hidráulicas exigen más tiempo.

Resumen

La caracterización de las respuestas de las aguas subterráneas a los impulsores naturales es poco costosa y ofrece un gran potencial en las investigaciones hidrogeológicas. Sin embargo, faltan el desarrollo y la evaluación de métodos, por ejemplo comparando los resultados con los derivados del uso de métodos convencionales. Este artículo presenta un método modificado para calcular la conductividad hidráulica (K) de acuíferos confinados utilizando la respuesta del agua en pozos a las mareas atmosféricas. El enfoque separa las influencias de las mareas terrestres y atmosféricas en los registros de nivel de agua de pozo en el dominio temporal. El problema resultante de deconvolución por regresión mal planteado puede superarse restringiendo la respuesta del agua del pozo a las mareas atmosféricas para que siga una función de respuesta barométrica semidiurna físicamente realista (S2-BRF), o para que siga directamente un modelo hidráulico modificado (BE-Hvorslev) similar a una evaluación de slug test. Un análisis con datos sintéticos muestra que se puede estimar K hasta 10-4 m/s cuando se dispone de registros de presión con intervalos de muestreo cortos. La aplicación a un conjunto de datos de campo de Camboya y Benín, con intervalos de muestreo de 20 a 60 minutos, respectivamente, da como resultado valores de K de 5.82∙10-7 m/s y 2.9-10-7 m/s. Esto concuerda con los resultados derivados independientemente de los ensayos de bombeo tanto para sedimentos confinados como para condiciones semiconfinadas de roca dura. Este método ofrece un enfoque prometedor y de bajo coste para derivar K únicamente a partir de conjuntos de datos de monitoreo en acuíferos confinados. Esto es especialmente ventajoso para formaciones de baja conductividad en las que las pruebas hidráulicas exigen más tiempo.

摘要

==表征地下水对自然因素的响应既具有经济性,又在水文地质调查中具有巨大潜力。然而,目前在该领域缺乏方法的发展和评估,例如通过与传统方法的比较结果进行评估。本文提出了一种修改后的方法,利用井水对大气潮汐的响应来计算承压含水层的渗透系数(K)。该方法在时间域内将地球潮汐和大气潮汐对经过滤的井水位记录的影响分离开来。由此产生的病态回归反演问题可以通过约束井水对大气潮汐的响应,使其符合具有物理合理性的半日周期气压响应函数(S2-BRF),或直接采用类似于微水试验评估的修正水力模型(BE-Hvorslev)。通过对合成数据的分析表明,当具有较短采样间隔的压力记录可用时,可估算出高达10-4 m/s的K值。将该方法应用于柬埔寨和贝宁的野外数据集中,其采样间隔分别为20分钟和60分钟,得到的K值分别为5.82∙10-7 m/s和2.9•10-7 m/s。这与通过抽水试验独立得出的结果相符,适用于承压沉积物和半承压硬岩条件下的情况。该方法为从承压含水层的监测数据中仅导出K值提供了一种有前景且低成本的途径。这在导水性较低的地层中尤为有利,因为水力测试需要时间。

Resumo

A caracterização das respostas das águas subterrâneas aos direcionadores naturais é econômica e oferece grande potencial em investigações hidrogeológicas. No entanto, há uma falta de desenvolvimento e avaliação de métodos, por exemplo, comparando os resultados com os derivados do uso de métodos convencionais. Este artigo apresenta um método modificado para calcular a condutividade hidráulica (K) de aquíferos confinados usando a resposta da água do poço às marés atmosféricas. A abordagem separa as influências da maré terrestre e atmosférica em registros filtrados de nível de água no domínio do tempo. O problema resultante da deconvolução da regressão mal colocada pode ser superado restringindo a resposta da água do poço às marés atmosféricas para seguir uma função de resposta barométrica semidiurna fisicamente realista (S2-BRF) ou seguir diretamente um modelo hidráulico modificado (BE- Hvorslev) semelhante a uma avaliação de teste slug. Uma análise com dados sintéticos mostra que K até 10-4 m/s pode ser estimado quando registros de pressão com curtos intervalos de amostragem estão disponíveis. A aplicação a um conjunto de dados de campo do Camboja e Benin, com intervalos de amostragem de 20 a 60 minutos, respectivamente, resulta em valores de K de 5.82∙10-7 m/s e 2.9•10-7 m/s. Isso está de acordo com os resultados derivados independentemente dos testes de bombeamento para sedimentos confinados e condições semiconfinadas de rochas duras. Este método oferece uma abordagem promissora e de baixo custo para derivar K apenas a partir de conjuntos de dados de monitoramento em aquíferos confinados. Isso é especialmente vantajoso para formações de baixa condutividade onde o teste hidráulico leva tempo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Code and data availability

The code and data set are available at https://github.com/remival/Atmospheric-Slug-tests (GitHub 2023).

References

  • Acworth RI, Halloran LJS, Rau GC, Cuthbert MO, Bernardi TL (2016) An objective frequency domain method for quantifying confined aquifer compressible storage using Earth and atmospheric tides. Geophysical Research Letters 43:611–671. https://doi.org/10.1002/2016GL071328

    Article  Google Scholar 

  • Allègre V, Brodsky EE, Xue L, Nale SM, Parker BL, Cherry JA (2016) Using earth-tide induced water pressure changes to measure in situ permeability: A comparison with long-term pumping tests. Water Resources Research 52(4):3113–3126

    Article  Google Scholar 

  • Barker JA (1988) A generalized radial flow model for hydraulic tests in fractured rock. Water Resources Research 24(10):1796–1804

    Article  Google Scholar 

  • Beckie R, Harvey CF (2002) What does a slug test measure: An investigation of instrument response and the effects of heterogeneity. Water Resources Research 38(12):26–1

    Article  Google Scholar 

  • Bredehoeft JD (1967) Response of well-aquifer systems to earth tides. Journal of Geophysical Research 72(12):3075–3087

    Article  Google Scholar 

  • Butler JJ Jr (1996) Slug tests in site characterization: some practical considerations. Environmental Geosciences 3(3):154–163

    Google Scholar 

  • Butler, J.J., Jr. (1998). The Design, Performance, and Analysis of Slug Tests (1st ed.), Lewis Publishers, New York, 252p.

  • Cartwright, N., Nielsen, P., & Perrochet, P. (2005). Influence of capillarity on a simple harmonic oscillating water table: Sand column experiments and modeling. Water resources research41(8).

  • Dottin, O. (1972) Carte géologique de reconnaissance: Siem Reap [Geological map: Siem Reap]. BRGM, Orléans, France

  • Evans, K., Beavan, J., Simpson, D., & Mousa, S. (1991). Estimating aquifer parameters from analysis of forced fluctuations in well level: An example from the Nubian Formation near Aswan, Egypt: 3. Diffusivity estimates for saturated and unsaturated zones. Journal of Geophysical Research: Solid Earth, 96(B7), 12161-12191.

  • Fischer P, Jardani A, Jourde H, Cardiff M, Wang X, Chedeville S, Lecoq N (2018) Harmonic pumping tomography applied to image the hydraulic properties and interpret the connectivity of a karstic and fractured aquifer (Lez aquifer, France). Advances in Water Resources 119:227–244

    Article  Google Scholar 

  • Furbish DJ (1991) The response of water level in a well to a time series of atmospheric loading under confined conditions. Water resources research 27(4):557–568

    Article  Google Scholar 

  • GitHub (2023) Atmospheric-Slug-tests. https://github.com/remival/Atmospheric-Slug-tests. Accessed 2023

  • Guiltinan E, Becker MW (2015) Measuring well hydraulic connectivity in fractured bedrock using periodic slug tests. Journal of Hydrology 521:100–107

    Article  Google Scholar 

  • Hsieh PA, Bredehoeft JD, Farr JM (1987) Determination of aquifer transmissivity from Earth tide analysis. Water resources research 23(10):1824–1832

    Article  Google Scholar 

  • Hvorslev, M. J. (1951). Time lag and soil permeability in ground-water observations (No. 36). Waterways Experiment Station, Corps of Engineers, US Army.

  • Hyder Z, Butler JJ Jr, McElwee CD, Liu W (1994) Slug tests in partially penetrating wells. Water Resources Research 30(11):2945–2957

    Article  Google Scholar 

  • Hyder Z, Butler JJ Jr (1995) Slug tests in unconfined formations: An assessment of the Bouwer and Rice technique. Groundwater 33(1):16–22

    Article  Google Scholar 

  • Klonne, F. W. (1880). Die periodischenschwankungen des wasserspiegels in den inundietenkohlenschachten von Dux in der period von 8 April bis 15 September 1879 (The periodic fluctuations of water levels in the flooded coal mine at Dux in the period 8 April to 15 September 1879). SitzungsberichteKaiserliche Akademie der Wissenschaften in Wien.

  • Lai G, Ge H, Wang W (2013) Transfer functions of the well-aquifer systems response to atmospheric loading and Earth tide from low to high-frequency band. Journal of Geophysical Research: Solid Earth 118(5):1904–1924

    Article  Google Scholar 

  • McMillan TC, Rau GC, Timms WA, Andersen MS (2019) Utilizing the impact of Earth and atmospheric tides on groundwater systems: A review reveals the future potential. Reviews of Geophysics 57(2):281–315

    Article  Google Scholar 

  • Meinzer, O. E. (1939). Ground water in the United States, a summary of ground-water conditions and resources, utilization of water from wells and springs, methods of scientific investigation, and literature relating to the subject, (Tech. Rep. 1938-39). U.S. Department of the Interior, Geological Survey. https://doi.org/10.3133/wsp836D

  • Merritt, M. L. (2004). Estimating hydraulic properties of the Floridan aquifer system by analysis of earth-tide, ocean-tide, and barometric effects, Collier and Hendry Counties, Florida (No. 3). US Department of the Interior, US Geological Survey.

  • Odling NE, Serrano RP, Hussein MEA, Riva M, Guadagnini A (2015) Detecting the vulnerability of groundwater in semi-confined aquifers using barometric response functions. Journal of Hydrology 520:143–156

    Article  Google Scholar 

  • Quilty EG, Roeloffs EA (1991) Removal of barometric pressure response from water level data. Journal of Geophysical Research: Solid Earth 96(B6):10209–10218

    Article  Google Scholar 

  • Peres AM, Onur M, Reynolds AC (1989) A new analysis procedure for determining aquifer properties from slug test data. Water Resources Research 25(7):1591–1602

    Article  Google Scholar 

  • Rabinovich A, Barrash W, Cardiff M, Hochstetler D. Ls., Bakhos T, Dagan G, Kitanidis PK (2015) Frequency dependent hydraulic properties estimated from oscillatory pumping tests in an unconfined aquifer. Journal of Hydrology 531:2–16

    Article  Google Scholar 

  • Ramey, H. J., Agarwal, R. G., & Martin, I. (1975). Analysis of''Slug Test''Or DST Flow Period Data. Journal of Canadian Petroleum Technology, 14(03).

  • Rasmussen TC, Crawford LA (1997) Identifying and removing barometric pressure effects in confined and unconfined aquifers. Groundwater 35(3):502–511

    Article  Google Scholar 

  • Rasmussen TC, Mote TL (2007) Monitoring surface and subsurface water storage using confined aquifer water levels at the Savannah River Site, USA. Vadose Zone Journal 6(2):327–335

    Article  Google Scholar 

  • Rau, G.C. (2018) hydrogeoscience/pygtide: PyGTide v0.2 (Version v0.2). Zenodo. https://doi.org/10.5281/zenodo.1346664

  • Rau GC, Cuthbert MO, Acworth RI, Blum P (2020) Disentangling the groundwater response to Earth and atmospheric tides to improve subsurface characterisation. Hydrology and Earth System Sciences 24:6033–6046

    Article  Google Scholar 

  • Rau GC, McMillan TC, Andersen MA, Timms WE (2022) In situ estimation of subsurface hydro-geomechanical properties using the groundwater response to semi-diurnal Earth and atmospheric tides. Hydrology and Earth System Sciences 26:4301–4321

    Article  Google Scholar 

  • Renard P, Glenz D, Mejias M (2009) Understanding diagnostic plots for well-test interpretation. Hydrogeology Journal 17(3):589–600

    Article  Google Scholar 

  • Renner J, Messar M (2006) Periodic pumping tests. Geophysical Journal International 167(1):479–493

    Article  Google Scholar 

  • Roeloffs E (1996) Poroelastic techniques in the study of earthquake-related hydrologic phenomena. Advances in geophysics 37:135–195. https://doi.org/10.1016/S0065-2687(08)60270-8

    Article  Google Scholar 

  • Rojstaczer S, Agnew DC (1989) The influence of formation material properties on the response of water levels in wells to Earth tides and atmospheric loading. Journal of Geophysical Research: Solid Earth 94(B9):12403–12411

    Article  Google Scholar 

  • Rojstaczer S, Riley FS (1990) Response of the water level in a well to earth tides and atmospheric loading under unconfined conditions. Water Resources Research 26(8):1803–1817

    Article  Google Scholar 

  • Schweizer, D., Ried, V., Rau, G. C., Tuck, J. E., & Stoica, P. (2021). Comparing Methods and Defining Practical Requirements for Extracting Harmonic Tidal Components from Groundwater Level Measurements. Mathematical Geosciences, 1-23.

  • Shen, Q., Zheming, S., Guangcai, W., Qingyu, X., Zejun, Z., &Jiaqian, H. (2020). Using water-level fluctuations in response to Earth-tide and barometric-pressure changes to measure the in-situ hydrogeological properties of an overburden aquifer in a coalfield. Hydrogeology Journal, 1-15.

  • Spane FA (2002) Considering barometric pressure in groundwater flow investigations. Water resources research 38(6):14–1

    Article  Google Scholar 

  • Sun, X., Shi, Z., Xiang, Y (2020). Frequency dependence of in‐situ transmissivity estimation of well‐aquifer systems from periodic loadings. Water Resources Research, e2020WR027536.

  • Tartakovsky, G.D. and S.P. Neuman, 2007. Three-dimensional saturated-unsaturated flow with axial symmetry to a partially penetrating well in a compressible unconfined aquifer, Water Resources Research, W01410, doi:1029/2006WR005153

  • Toll NJ, Rasmussen TC (2007) Removal of barometric pressure effects and earth tides from observed water levels. Groundwater 45(1):101–105

    Article  Google Scholar 

  • Turnadge C, Crosbie RS, Barron O, Rau GC (2019) Comparing methods of barometric efficiency characterization for specific storage estimation. Groundwater 57(6):844–859

    Article  Google Scholar 

  • Valois R, Vouillamoz JM, Lun S, Arnout L (2017) Assessment of water resources to support the development of irrigation in northwest Cambodia: a water budget approach. Hydrological Sciences Journal 62(11):1840–1855

    Article  Google Scholar 

  • Valois R, Vouillamoz JM, Lun S, Arnout L (2018) Mapping groundwater reserves in northwestern Cambodia with the combined use of data from lithologs and time-domain-electromagnetic and magnetic-resonance soundings. Hydrogeology Journal 26(4):1187–1200

    Article  Google Scholar 

  • Valois, R., Rau, C.G., Vouillamoz, J.M., Derode, B. (2022). Estimating hydraulic properties of the shallow subsurface using the groundwater response to Earth and atmospheric tides: a comparison with pumping tests. Water Resources Research, accepted.

  • Vouillamoz JM, Sokheng S, Bruyere O, Caron D, Arnout L (2012) Towards a better estimate of storage properties of aquifer with magnetic resonance sounding. Journal of Hydrology 458:51–58

    Article  Google Scholar 

  • Vouillamoz JM, Lawson FMA, Yalo N, Descloitres M (2014) The use of magnetic resonance sounding for quantifying specific yield and transmissivity in hard rock aquifers: The example of Benin. Journal of Applied Geophysics 107:16–24

    Article  Google Scholar 

  • Vouillamoz JM, Valois R, Lun S, Caron D, Arnout L (2016) Can groundwater secure drinking-water supply and supplementary irrigation in new settlements of North-West Cambodia? Hydrogeology Journal 24(1):195–209

    Article  Google Scholar 

  • Wang, H. F. (2000). Theory of linear poroelasticity with applications to geomechanics and hydrogeology (Vol. 2). Princeton University Press.

  • Young A (1913) Tidal phenomena at inland boreholes near Cradock. Transactions of the Royal Society of South Africa 3(1):61–106

    Article  Google Scholar 

  • Zhang S, Shi Z, Wang G (2019) Comparison of aquifer parameters inferred from water level changes induced by slug test, earth tide and earthquake–A case study in the three Gorges area. Journal of Hydrology 579:124169

    Article  Google Scholar 

Download references

Funding

European Community,DCI-FOOD/2011/278-175,Jean-Michel Vouillamoz ,DIPECHO SEA ECHO/DIP/BUD/2010/01017,Jean-Michel Vouillamoz

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rémi Valois.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valois, R., Derode, B., Vouillamoz, JM. et al. Use of atmospheric tides to estimate the hydraulic conductivity of confined and semi-confined aquifers. Hydrogeol J 31, 2115–2128 (2023). https://doi.org/10.1007/s10040-023-02715-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-023-02715-5

Keywords

Navigation