Skip to main content
Log in

Soil temperature response in Korea to a changing climate using a land surface model

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The land surface processes play an important role in weather and climate systems through its regulation of radiation, heat, water and momentum fluxes. Soil temperature (ST) is one of the most important parameters in the land surface processes; however, there are few extensive measurements of ST with a long time series in the world. According to the CLImatology of Parameters at the Surface (CLIPS) methodology, the output of a trusted Soil-Vegetation- Atmosphere Transfer (SVAT) scheme can be utilized instead of observations to investigate the regional climate of interest. In this study, ST in South Korea is estimated in a view of future climate using the output from a trusted SVAT scheme — the University of TOrino model of land Process Interaction with Atmosphere (UTOPIA), which is driven by a regional climate model. Here characteristic changes in ST are analyzed under the IPCC A2 future climate for 2046-2055 and 2091-2100, and are compared with those under the reference climate for 1996-2005. The UTOPIA results were validated using the observed ST in the reference climate, and the model proved to produce reasonable ST in South Korea. The UTOPIA simulations indicate that ST increases due to environmental change, especially in air temperature (AT), in the future climate. The increment of ST is proportional to that of AT except for winter. In wintertime, the ST variations are different from region to region mainly due to variations in snow cover, which keeps ST from significant changes by the climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad, M. F., and G. Rasul, 2008: Prediction of soil temperature by air temperature: A case study for Faisalabad. Pakistan J. Meteor., 5, 19–27.

    Google Scholar 

  • Akhtar, M., N. Ahmad, and M. J. Booij, 2008: The impact of climate change on the water resources of Hindukush-Karakorum-Himalaya region under different glacier coverage scenarios. J. Hydrol., 355, 148–163.

    Article  Google Scholar 

  • Arai-Sanoh, Y., T. Ishimaru, A. Ohsumi, and M. Kondo, 2010: Effects of soil temperature on growth and root function in rice. Plant Prod. Sci., 13, 235–242, doi:10.1626/pps.13.235.

    Article  Google Scholar 

  • Arnell, N. W., 2004: Climate change and global water resources: SRES emissions and socio-economic scenarios. Global Environ. Change, 14, 31–52.

    Article  Google Scholar 

  • Arora, V. K., 2002: Modeling vegetation as a dynamic component in soilvegetation-atmosphere transfer schemes and hydrological models. Rev. Geophys., 40, 1–26, doi:10.1029/2001RG000103.

    Article  Google Scholar 

  • Bell, M. L., R. Goldberg, C. Hogrefe, P. L. Kinney, K. Knowlton, B. Lynn, J. Rosenthal, C. Rosenzweig, and J. A. Patz, 2007: Climate change, ambient ozone, and health in 50 US cities. Climate Change, 82, 61–76, doi:10.1007/s10584-006-9166-7.

    Article  Google Scholar 

  • Boo, K.-O., W.-T. Kwon, J.-H. Oh, and H.-J. Baek, 2004: Response of global warming on regional climate change over Korea: An experiment with the MM5 model. Geophys. Res. Lett., 31, L21206, doi:10.1029/2004GL021171.

    Google Scholar 

  • Boone, A., V. Masson, T. Meyers, and J. Noilhan, 2000: The influence of the inclusion of soil freezing on simulations by a soil-vegetationatmosphere transfer scheme. J. Appl. Meteorol., 39, 1544–1569.

    Article  Google Scholar 

  • Cabré, M. F., S. Solman, and M. Núñez, 2016: Regional climate change scenarios over southern South America for future climate (2080-2099) using the MM5 model. Mean, interannual variability and uncertainties. Atmósfera, 29, 35–60, doi:10.20937/ATM.2016.29.01.04.

    Google Scholar 

  • Cassardo, C., 2006: The Land Surface Process Model (LSPM) Version 2006. Tech. Rep. DFG Report -01/2006, Dipartimento di Fisica Generale Amedeo Avogadro, 62 pp.

    Google Scholar 

  • Cassardo, C., 2015: The University of TOrino model of land Process Interaction with Atmosphere (UTOPIA) Version 2015. Tech. Rep. CCCPR/SSRCTR-2015-1, CCCPR/SSRC, Ewha Womans University, 80 pp.

    Google Scholar 

  • Cassardo, C., J. Jun, and A. Longhetto, 1995: A study of the performance of a land surface process model (LSPM). Bound.-Layer Meteor., 72, 87–121.

    Article  Google Scholar 

  • Cassardo, C., E. Carena, and A. Longhetto, 1998: Validation and sensitivity tests on improved parametrizations of a land surface process model (LSPM) in the Po Valley. Il. Nuovo. Cimento. C, 21, 189–213.

    Google Scholar 

  • Cassardo, C., G. P. Balsamo, R. Pelosini, C. Cacciamani, D. Cesari, T. Paccagnella, and A. Longhetto, 1999: Initialization of soil parameters in LAM: CLIPS experiment. MAP Newsl., 11, 26–27. [Available at http:// www.map.meteoswiss.ch/map-doc/NL11/cassardo.pdf.]

    Google Scholar 

  • Cassardo, C., N. Loglisci, D. Gandini, M. W. Qian, G. Y. Niu, P. Ramieri, R. Pelosini, and A. Longhetto, 2002: The flood of November 1994 in Piedmont, Italy: A quantitative analysis and simulation. Hydrol. Process., 16, 1275–1299.

    Article  Google Scholar 

  • Cassardo, C., N. Loglisci, G. Paesano, D. Rabuffetti, and M. W. Qian, 2006: The hydrological balance of the October 2000 flood in Piedmont, Italy: Quantitative analysis and simulation. Phys. Geogr., 27, 411–434.

    Article  Google Scholar 

  • Cassardo, C., L. Mercalli, and D. Cat Berro, 2007: Characteristics of the summer 2003 heat wave in Piedmont, Italy, and its effects on water resources. J. Korean Meteor. Soc., 43, 195–221.

    Google Scholar 

  • Cassardo, C., S. K. Park, B. Thakuri, D. Priolo, and Y. Zhang, 2009: Soil surface energy and water budgets during a monsoon season in Korea. J. Hydrometeor., 10, 1379–1396.

    Article  Google Scholar 

  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surfacehydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569–585.

    Google Scholar 

  • Chen, W., Z. Jiang, L. Li, and P. Yiou, 2011: Simulation of regional climate change under the IPCC A2 scenario in southeast China. Climate Dyn., 36, 491–507, doi:10.1007/s00382-010-0910-3.

    Article  Google Scholar 

  • Choi, J.-Y., C.-G. Song, J.-B. Lee, S.-C. Hong, and C.-H. Bang, 2011: Development of a dynamic downscaling method using a general circulation model (CCSM3) of the regional climate model (MM5). Climate Change Res., 2, 79–91 (Korean with English abstract).

    Article  Google Scholar 

  • Chudinova, S. M., O. W. Frauenfeld, R. G. Barry, T. Zhang, and V. A. Sorokovikov, 2006: Relationship between air and soil temperature trends and periodicities in the permafrost regions of Russia. J. Geophys. Res., 111, F02008, doi:10.1029/2005JF000342.

    Article  Google Scholar 

  • Collins, W. D., and Coauthors, 2006: The community climate system model version 3 (CCSM3). J. Climate, 19, 2122–2143.

    Article  Google Scholar 

  • Davenport, J. R., K. E. Bair, and R. G. Stevens, 2012: Relationship between soil temperature and N release in organic and conventionally managed vineyards. Commun. Soil Sci. Plant Anal., 43, 464–470, doi: 10.1080/00103624.2012.641838.

    Article  Google Scholar 

  • Déqué, M., and Coauthors, 2007: An intercomparison of regional climate simulations for Europe: Assessing uncertainties in model projections. Climate Change, 81, 53–70.

    Article  Google Scholar 

  • Dorigo, W. A., and Coauthors, 2011: The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci., 15, 1675–1698, doi:10.5194/hess-15-1675-2011.

    Article  Google Scholar 

  • Fan, X., 2009: Impacts of soil heating condition on precipitation simulations in the Weather Research and Forecasting model. Mon. Wea. Rev., 137, 2263–2285.

    Article  Google Scholar 

  • Fan, Y., and H. van den Dool, 2004: Climate Prediction Center global monthly soil moisture data set at 0.5o resolution for 1948 to present. J. Geophys. Res., 109, D10102, doi:10.1029/2003JD004345.

    Article  Google Scholar 

  • Feng, J. C., X. M. Liu, C. Cassardo, and A. Longhetto, 1997: A model of plant transpiration and stomatal regulation under the condition of water stress. J. Desert Res., 17, 59–66.

    Google Scholar 

  • Fernández, J., J. P. Montávez, J. Sáenz, J. F. González-Rouco, and E. Zorita, 2007: Sensitivity of the MM5 mesoscale model to physical parameterizations for regional climate studies: Annual cycle. J. Geophys. Res., 112, D04101, doi:10.1029/2005JD006649.

    Google Scholar 

  • Fischer, G., M. Shah, F. N. Tubiello, and H. van Velhuizen, 2005: Socio economic and climate change impacts on agriculture: an integrated assessment, 1990-2080. Philos. Trans. Roy. Soc. Londen, 360, 2067–2083, doi:10.1098/rstb.2005.1744.

    Article  Google Scholar 

  • Francone, C., C. Cassardo, F. Spanna, L. Alemanno, D. Bertoni, R. Richiardone, and I. Vercellino, 2010: Preliminary results on the evaluation of factors influencing evapotranspiration processes in vineyards. Water, 2, 916–937, doi:10.3390/w2040916.

    Article  Google Scholar 

  • Giorgi, F., and P. Lionello, 2008: Climate change projections for the Mediterranean region. Global Planet. Change, 63, 90–104, doi:10.1016/j.gloplacha.2007.09.005.

    Article  Google Scholar 

  • Gómez, I., V. Caselles, M. J. Estrela, and R. Niclòs, 2016: Impact of initial soil temperature derived from remote sensing and numerical weather prediction datasets on the simulation of extreme heat events. Remote Sens., 8, 589, doi:10.3390/rs8070589.

    Article  Google Scholar 

  • Graham, N. E., D. R. Cayan, P. D. Bromirski, and R. E. Flick, 2013: Multimodel projections of twenty-first century North Pacific winter wave climate under the IPCC A2 scenario. Climate Dyn., 40, 1335–1360, doi:10.1007/s00382-012-1435-8.

    Article  Google Scholar 

  • Grell, G. A., J. Dudhia, and D. Stauffer, 1994: A description of the fifthgeneration Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+STR, 121 pp.

    Google Scholar 

  • Gustafsson, D., M. Stähli, and P.-E. Jansson, 2001: The surface energy balance of a snow cover: comparing measurements to two different simulation models. Theor. Appl. Climatol., 70, 81–96.

    Article  Google Scholar 

  • Hashimoto, S., and M. Suzuki, 2004: The impact of forest clear-cutting on soil temperature: a comparison between before and after cutting, and between clear-cut and control sites. J. Forest Res., 9, 125–132.

    Article  Google Scholar 

  • Hogrefe, C., and Coauthors, 2004: Simulating changes in regional air pollution over the eastern United States due to changes in global and regional climate and emissions. J. Geophys. Res., 109, D22301.

    Article  Google Scholar 

  • Hong, S.-Y., and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 2322–2339.

    Article  Google Scholar 

  • Hong, S., X. Yu, S. K. Park, Y.-S., Choi, and B. Myoung, 2014: Assessing optimal set of implemented physical parameterization schemes in a multi-physics land surface model using genetic algorithm. Geosci. Model Dev., 7, 2517–2529, doi:10.5194/gmd-7-2517-2014.

    Article  Google Scholar 

  • Hong, S., S. K. Park, and X. Yu, 2015: Scheme-based optimization of land surface model using a micro-genetic algorithm: Assessment of its performance and usability for regional applications. Sci. Online Lett. Atmos., 11, 129–133, doi:10.2151/sola.2015-030.

    Google Scholar 

  • IPCC, 2000: IPCC Special Report: Emissions Scenarios. N. Nakicenovic et al. Eds., IPCC, 21 pp.

  • Islam, K. I., A. Khan, and T. Islam, 2015: Correlation between atmospheric temperature and soil temperature: A case study for Dhaka, Bangladesh. Atmos. Climate Sci., 5, 200–208, doi:10.4236/acs.2015.53014.

    Google Scholar 

  • Jaeger, E. B., and S. I. Seneviratne, 2011: Impact of soil moistureatmosphere coupling on European climate extremes and trends in a regional climate model. Climate Dyn., 36, 1919–1939, doi:10.1007/s00382-010-0780-8.

    Article  Google Scholar 

  • Jin, M. S., and T. Mullens, 2014: A study of the relations between soil moisture, soil temperatures and surface temperatures using ARM observations and oine CLM4 simulations. Climate, 2, 279–295, doi:10.3390/cli2040279.

    Article  Google Scholar 

  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain-Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, K. A. Emanuel et al. Eds., American Meteorological Society, 165–170.

    Chapter  Google Scholar 

  • Kanae, S., Y. Hirabayashi, T. Yamada, and T. Oki, 2006: Influence of “realistic” land surface wetness on predictability of seasonal precipitation in Boreal summer. J. Climate, 19, 1450–1460.

    Article  Google Scholar 

  • Koo, G.-S., K.-O. Boo, and W.-T. Kwon, 2009: Projection of temperature over Korea using an MM5 regional climate simulation. Climate Res., 40, 241–248.

    Article  Google Scholar 

  • Krepalani, R. H., J. Oh, A. Kulkarni, S. Sabade, and H. Chaudhari, 2007: South Asian summer monsoon precipitation variability: Coupled climate model simulations and projections under IPCC AR4. Theor. Appl. Climatol., 90, 133–159.

    Article  Google Scholar 

  • Kum, D., K. J. Lim, C. H. Jang, J. Ryu, J. E. Yang, S. J. Kim, D. S. Kong, and Y. Jung, 2014: Projecting future climate change scenarios using three bias-correction methods. Adv. Meteor., 2014, 704151, doi:10.1155/2014/704151.

    Article  Google Scholar 

  • Lee, J.-B., and Coauthors, 2015: Projections of summertime ozone concentration over East Asia under multiple IPCC SRES emission scenarios. Atmos. Environ., 106, 335–346, doi:10.1016/j.atmosenv.2015. 02.019.

    Article  Google Scholar 

  • Lenihan, J. M., D. Bachelet, R. P. Neilson, and R. Drapek, 2008: Response of vegetation distribution, ecosystem productivity, and fire to climate change scenarios for California. Climate Change, 87, 215–230.

    Article  Google Scholar 

  • Li, W., R. Fu, and R. Dickinson, 2006: Rainfall and its seasonality over the Amazon in the 21st century as assessed by the coupled models for the IPCC AR4. J. Geophys. Res., 111, D02111.

    Article  Google Scholar 

  • Li, X.-Y., S.-Y. Zhang, H.-Y. Peng, X. Hu, and Y.-J. Ma, 2013: Soil water and temperature dynamics in shrub-encroached grasslands and climatic implications: Results from Inner Mongolia steppe ecosystem of north China. Agric. Forest Meteor., 171, 20–30, doi:10.1016/j.agrformet.2012.11.001.

    Article  Google Scholar 

  • Luo, L., and Coauthors, 2003: Effects of frozen soil on soil temperature, spring infiltration, and runoff: Results from the PILPS 2 (d) experiment at Valdai, Russia. J. Hydrometeor., 4, 334–351.

    Article  Google Scholar 

  • Mass, C. F., and Y.-H. Kuo, 1998: Regional real-time numerical weather prediction: Current status and future potential. Bull. Amer. Meteor. Soc., 79, 253–263.

    Article  Google Scholar 

  • Meng, L., and S. Quiring, 2008: A comparison of soil moisture models using soil climate analysis network observations. J. Hydrometeor., 9, 641–659.

    Article  Google Scholar 

  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16663–16682.

    Article  Google Scholar 

  • Mote, P. W., and E. P. Salathé, 2010: Future climate in the Pacific Northwest. Climatic Change, 102, 29–50, doi:10.1007/s10584-010-9848-z.

    Article  Google Scholar 

  • Myoung, B., Y.-S. Choi, S.-J. Choi, and S. K. Park, 2012: Impact of vegetation on land-atmosphere coupling strength and its implication for desertification mitigation over East Asia. J. Geophys. Res., 117, D12113, doi:10.1029/2011JD017143.

    Article  Google Scholar 

  • Nicholson, S., 2000: Land surface processes and Sahel climate. Rev. Geophys., 38, 117–139.

    Article  Google Scholar 

  • Oh, S.-G., and Coauthors, 2016: Projections of high resolution climate changes for South Korea using multiple-regional climate models based on four RCP scenarios. Part 2: Precipitation. Asia-Pac. J. Atmos. Sci., 52, 171–189, doi:10.1007/s13143-016-0018-8.

    Google Scholar 

  • Park, S., and S. K. Park, 2016: Parameterization of the snow-covered surface albedo in the Noah-MP Version 1.0 by implementing vegetation effects. Geosci. Model Dev., 9, 1073–1085, doi:10.5194/gmd-9-1073-2016.

    Article  Google Scholar 

  • Parry, M. L., C. Rosenzweig, A. Iglesias, M. Livermore, and G. Fischer, 2004: Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Global Environ. Change, 14, 53–67.

    Article  Google Scholar 

  • Peng, F., M. Mu, and G. Sun, 2017: Responses of soil moisture to climate change based on projections by the end of the 21st century under the high emission scenario in the ‘Huang-Huai-Hai Plain’ region of China. J. Hydro-environ. Res., 14, 105–118, doi:10.1016/j.jher.2016.10.003.

    Article  Google Scholar 

  • Pielke, R. A., R. Avissar, M. Raupach, A. J. Dolman, X. Zeng, and A. S. Denning, 1998: Interactions between the atmosphere and terrestrial ecosystems: influence on weather and climate. Glob. Change Biol., 4, 461–475.

    Article  Google Scholar 

  • Pitman, A., and Coauthors, 1993: Project for Intercomparison of Landsurface Parameterization Schemes (PILPS): Results from the off-line control simulations (Phase 1a). IGPO publication series, 7, 47 pp.

    Google Scholar 

  • Pleim, J. E., and R. Gilliam, 2009: An indirect data assimilation scheme for deep soil temperature in the Pleim-Xiu land surface model. J. Appl. Meteor. Climatol., 48, 1362–1376.

    Article  Google Scholar 

  • Qian, M., N. Loglisci, C. Cassardo, A. Longhetto, and C. Giraud, 2001: Energy and water balance at soil-air interface in a Sahelian region. Adv. Atmos. Sci., 18, 897–909.

    Google Scholar 

  • Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 model. Quart. J. Roy. Meteor. Soc., 124, 1071–1107.

    Article  Google Scholar 

  • Riahi, K., S. Rao, V. Krey, C. Cho, V. Chirkov, G. Fischer, G. Kindermann, N. Nakicenovic, and P. Rafaj, 2011: RCP 8.5-A scenario of comparatively high greenhouse gas emissions. Climate Change, 109, 33–57, doi:10.1007/s10584-011-0149-y.

    Article  Google Scholar 

  • Robock, A., K. Y. Vinnikov, G. Srinivasan, J. K. Entin, S. E. Hollinger, N. A. Speranskaya, S. Liu, and A. Namkhai, 2000: The global soil moisture data bank. Bull. Amer. Meteor. Soc., 81, 1281–1299.

    Article  Google Scholar 

  • Ruti, P. M., C. Cassardo, C. Cacciamani, T. Paccagnella, A. Longhetto, and A. Bargagli, 1997: Intercomparison between BATS and LSPM surface schemes, using point micrometeorological data set. Contrib. Atmos. Phys., 70, 201–220.

    Google Scholar 

  • Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moistureclimate interactions in a changing climate: A review. Earth-Sci. Rev., 99, 125–161, doi:10.1016/j.earscirev.2010.02.004.

    Article  Google Scholar 

  • Seyfried, M. S., G. N. Flerchinger, M. D. Murdock, C. L. Hanson, and S. Van Vactor, 2001: Long-term soil temperature database, Reynolds Creek Experimental Watershed, Idaho, United States. Water Resour. Res., 37, 2843–2846.

    Article  Google Scholar 

  • Solman, S. A., and N. L. Pessacg, 2012: Regional climate simulations over South America: Sensitivity to model physics and to the treatment of lateral boundary conditions using the MM5 model. Climate Dyn., 38, 281–300, doi:10.1007/s00382-011-1049-6.

    Article  Google Scholar 

  • Suh, M.-S., and Coauthors, 2016: Projections of high resolution climate changes for South Korea using multiple-regional climate models based on four RCP scenarios. Part 1: Surface air temperature. Asia-Pac. J. Atmos. Sci., 52, 151–169, doi:10.1007/s13143-016-0017-9.

    Google Scholar 

  • Tadross, M. A., W. J. Gutowski, Jr., B. C. Hewitson, C. Jack, and M. New, 2006: MM5 simulations of interannual change and the diurnal cycle of southern African regional climate. Theor. Appl. Climatol., 86, 63–80.

    Article  Google Scholar 

  • Trusilova, K., M. Jung, G. Churkina, U. Karstens, M. Heimann, and M. Claussen, 2008: Urbanization impacts on the climate in Europe: Numerical experiments by the PSU-NCAR Mesoscale Model (MM5). J. Appl. Meteor. Climatol., 47, 1442–1455.

    Article  Google Scholar 

  • van Vuuren, D. P., and Coauthors, 2011: The representative concentration pathways: An overview. Climatic Change, 109, 5–31, doi:10.1007/ s10584-011-0148-z.

    Article  Google Scholar 

  • Williams, J. W., S. T. Jackson, and J. E. Kutzbach, 2007: Projected distributions of novel and disappearing climates by 2100 AD. Proc. Natl. Acad. Sci., 104, 5738–5742.

    Article  Google Scholar 

  • Wisser, D., S. Marchenko, J. Talbot, C. C. Treat, and S. Frolking, 2011: Soil temperature response to 21st century global warming: The role of and some implications for peat carbon in thawing permafrost soils in North America. Earth Syst. Dyn., 2, 121–138, doi:10.5194/esd-2-121-2011.

    Article  Google Scholar 

  • Xia, Y., and Coauthors, 2013: Validation of Noah-simulated soil temperature in the North American Land Data Assimilation System Phase 2. J. Appl. Meteor. Climatol., 52, 455–471, doi:10.1175/JAMC-D-12-033.1.

    Article  Google Scholar 

  • Xue, Y., R. Vasic, Z. Janjic, Y. M. Liu, and P. C. Chu, 2012: The impact of spring subsurface soil temperature anomaly in the western U.S. on North American summer precipitation: A case study using regional climate model downscaling. J. Geophys. Res., 117, D11103, doi:10. 1029/2012JD017692.

    Google Scholar 

  • Yu, X.-Z., F.-H. Yuan, A.-Z. Wang, J.-B. Wu, and D.-X. Guan, 2010: Effects of snow cover on soil temperature in broad-leaved Korean pine forest in Changbai Mountains. Chinese J. Appl. Ecol., 21, 3015–3020 (in Chinese with English abstract).

    Google Scholar 

  • Zhang, H., E. Wang, D. Zhou, Z. Luo, and Z. Zhang, 2016: Rising soil temperature in China and its potential ecological impact. Sci. Rep., 6, 35530, doi:10.1038/srep35530.

    Article  Google Scholar 

  • Zhang, T., 2005: Influence of the seasonal snow cover on the ground thermal regime: An overview. Rev. Geophys., 43, RG4002, doi:10. 1029/2004RG000157.

    Google Scholar 

  • Zhang, Y., S. Wang, A. G. Barr, and T. A. Black, 2008: Impact of snow cover on soil temperature and its simulation in a boreal aspen forest. Cold Reg. Sci. Technol., 52, 355–370.

    Article  Google Scholar 

  • Zhang, Y., C. Cassardo, C. Ye, M. Galli, and N. Vela, 2011: The role of the land surface processes in the rainfall generated by a landfall typhoon: A simulation of the Typhoon Sepat (2007). Asia-Pac. J. Atmos. Sci., 47, 63–77, doi:10.1007/s13143-011-1006-7.

    Article  Google Scholar 

  • Zheng, D., E. R. Hunt, Jr., and S. W. Running, 1993: A daily soil temperature model based on air temperature and precipitation for continental applications. Climate Res., 2, 183–191.

    Article  Google Scholar 

  • Zhu, J., and X.-Z. Liang, 2005: Regional climate model simulation of U.S. soil temperature and moisture during 1982-2002. J. Geophys. Res., 110, D24110, doi:10.1029/2005JD006472.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seon Ki Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S.K., O, S. & Cassardo, C. Soil temperature response in Korea to a changing climate using a land surface model. Asia-Pacific J Atmos Sci 53, 457–470 (2017). https://doi.org/10.1007/s13143-017-0048-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-017-0048-x

Keywords

Navigation