Skip to main content

Advertisement

Log in

Gregariousness increases brain size in ungulates

  • Population Ecology
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

The brain’s main function is to organise the physiological and behavioural responses to environmental and social challenges in order to keep the organism alive. Here, we studied the effects that gregariousness (as a measurement of sociality), dietary habits, gestation length and sex have on brain size of extant ungulates. The analysis controlled for the effects of phylogeny and for random variability implicit in the data set. We tested the following groups of hypotheses: (1) Social brain hypothesis—gregarious species are more likely to have larger brains than non-gregarious species because the former are subjected to demanding and complex social interactions; (2) Ecological hypothesis—dietary habits impose challenging cognitive tasks associated with finding and manipulating food (foraging strategy); (3) Developmental hypotheses (a) energy strategy: selection for larger brains operates, primarily, on maternal metabolic turnover (i.e. gestation length) in relation to food quality because the majority of the brain’s growth takes place in utero, and finally (b) sex hypothesis: females are expected to have larger brains than males, relative to body size, because of the differential growth rates of the soma and brain between the sexes. We found that, after adjusting for body mass, gregariousness and gestation length explained most of the variation in brain mass across the ungulate species studied. Larger species had larger brains; gregarious species and those with longer gestation lengths, relative to body mass, had larger brains than non-gregarious species and those with shorter gestation lengths. The effect of diet was negligible and subrogated by gestation length, and sex had no significant effect on brain size. The ultimate cause that could have triggered the co-evolution between gestation length and brain size remains unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alados CL, Escos J (1987) Relationships between movement rate, agonistic displacements and forage availability in Spanish ibexes (Capra pyrenaica). Biol Behav 12:245–255

    Google Scholar 

  • Altmann PL, Dittmer DS (1972) Biology Data Book. Federation of American Societies for Experimental Biology, Bethesda, MD

    Google Scholar 

  • Anderson AE, Medin DE, Bowden DC (1974) Growth & morphometry of the carcass, selected bones, organs and glands of mule deer. Wildl Monogr 39:1–122

    Google Scholar 

  • Barton RA, Harvey PH (2000) Mosaic evolution of brain structure in mammals. Nature 405:1055–1058

    Article  PubMed  CAS  Google Scholar 

  • Bauchot R (1985) L’encéphalisation chez les carnivores et les Artiodactyles. Mammalia 49:559–572

    Article  Google Scholar 

  • Bauchot R, Stephan H (1964) Le poids encéphalique chez les insectivores malagaches. Acta zool Stockh 45:63–75

    Article  Google Scholar 

  • Bauchot R, Stephan H (1966) Données nouvelles sur l’encephalisation des insectivores et des prosimièns. Mammalia 33:225–275

    Article  Google Scholar 

  • Beauchamp G (2001) Should vigilance always decrease with group size? Behav Ecol Sociobiol 51:47–52

    Article  Google Scholar 

  • Beauchamp G, Ruxton GD (2003) Changes in vigilance with group size under scramble competition. Am Nat 161:672–675

    Article  PubMed  CAS  Google Scholar 

  • Blomberg SP, Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717–745

    Article  PubMed  Google Scholar 

  • Brashares JS, Garland T, Arcese P (2000) Phylogenetic analysis of coadaptation in behaviour, diet, and body size in the African antelope. Behav Ecol 11:452–463

    Article  Google Scholar 

  • Budeau DA, Verts BJ (1986) Relative brain size and structural complexity of habitats of Chipmunks. J Mammal 67:579–581

    Article  Google Scholar 

  • Bunnell FL, Olsen NA (1976) Weights and growth of Dall sheep in Kluane Park Reserve, Yukon Territory. Can Field Nat 90:157–162

    Google Scholar 

  • Caraco T (1981) Risk-sensitivity and foraging groups. Ecology 62:527–531

    Article  Google Scholar 

  • Clutton-Brock TH (1991) The evolution of parental care. Princeton University Press, Oxford

    Google Scholar 

  • Clutton-Brock TH, Harvey PH (1980) Primates, brains and ecology. J Zool 190:309–323

    Article  Google Scholar 

  • Clutton-Brock TH, Guinness FE, Albon SD (1982) Red deer: behaviour and ecology of two sexes. University of Chicago Press, Chicago

    Google Scholar 

  • Cowlishaw G, Lawes MJ, Lightbody M, Martin A, Pettifor R, Rowcliffe JM (2004) A simple rule for the costs of vigilance: empirical evidence from a social forager. In: Proceedings of the Royal Society of London Series B. Biol Sci 271:27–33

  • Corbet GB, Hill JE (1986) A world list of mammalian species. British Museum (Natural History), London

    Google Scholar 

  • Crile G, Quiring DP (1940) A record of the body weight and certain organ and gland weights of 3690 animals. Ohio J Sci 40:219–259

    Google Scholar 

  • Deacon TW (1990) Problems of ontogeny and phylogeny in brain-size evolution. Int J Primatol 11:237–282

    Article  Google Scholar 

  • Deacon TW (1998) The symbolic species: the co-evolution of language and the brain. WW Norton & Company, New York

    Google Scholar 

  • Demment MW, van Soest PJ (1985) A nutritional explanation for body-size patterns of ruminant and nonruminant herbivores. Am Nat 125:641–672

    Article  Google Scholar 

  • Dunbar RIM (1992) Neocortex size as a constraint on group-size in Primates. J Hum Evol 22:469–493

    Article  Google Scholar 

  • Dunbar RIM (1995) Neocortex size and group-size in Primates—a test of the hypothesis. J Hum Evol 28:287–296

    Article  Google Scholar 

  • Dunbar RIM (1998) The social brain hypothesis. Evol Anthropol 6:178–190

    Article  Google Scholar 

  • Dunbar RIM, Bever J (1998) Neocortex size predicts group size in carnivores and some insectivores. Ethology 104:695–708

    Article  Google Scholar 

  • Dutoit JT, Provenza FD, Nastis A (1991) Conditioned taste-aversions—how sick must a ruminant get before it learns about toxicity in foods. Appl Anim Behav Sci 30:35–46

    Article  Google Scholar 

  • Ebinger P (1974) A cytoarchitectonic volumetric comparison of brains in wild and domestic sheep. Zeitschrift fuer Anatomie und Entwicklungsgeschichte 144:267–302

    Article  CAS  Google Scholar 

  • Eisenberg JF (1981) The mammalian radiations. University of Chicago Press, Chicago

    Google Scholar 

  • Eisenberg JF, Wilson DE (1978) Relative brain size and feeding strategies in the Chiroptera. Evolution 32:740–751

    Article  Google Scholar 

  • Farnsworth KD, Focardi S, Beecham JA (2002) Grassland-herbivore interactions: how do grazers coexist? Am Nat 159:24–39

    Article  PubMed  CAS  Google Scholar 

  • Fortin D (2003) Searching behavior and use of sampling information by free- ranging bison (Bos bison). Behav Ecol Sociobiol 54:194–203

    Google Scholar 

  • Fritz H, deGarineWichatitsky M (1996) Foraging in a social antelope: effects of group size on foraging choices and resource perception in impala. J Anim Ecol 65:736–742

    Article  Google Scholar 

  • Gagnon M, Chew AE (2000) Dietary preferences in extant African bovidae. J Mammal 81:490–511

    Article  Google Scholar 

  • Garland T, Janis CM (1993) Does metatarsal femur ratio predict maximal running speed in cursorial mammals. J Zool 229:133–151

    Article  Google Scholar 

  • Garland T, Harvey PH, Ives AR (1992) Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst Biol 41:18–32

    Article  Google Scholar 

  • Gatesy J, Amato G, Vrba E, Schaller G, DeSalle R (1997) A cladistic analysis of mitochondrial ribosomal dna from the bovidae. Mol Phylogenet Evol 7:303–319

    Article  PubMed  CAS  Google Scholar 

  • GenStat 6.1. (2002) GenStat 6.1. reference manual. VSN International Ltd, Oxford

    Google Scholar 

  • Gentry AW (1992) The subfamilies and tribes of the family bovidae. Mamm Rev 22:1–32

    Article  Google Scholar 

  • Gentry AW, Hooker JJ (1988) The phylogeny of the Artiodactyla. In: Benton MJ (ed) The phylogeny and classification of the Tetrapods, Volume 2: Mammals. Systematics Association Special Volume 35B Clarendon Press, Oxford, pp 235–272

    Google Scholar 

  • Georgiadis N (1985) Growth patterns, sexual dimorphism and reproduction in african ruminants. Afr J Ecol 23:75–87

    Article  Google Scholar 

  • Gibbons A (1998) Solving the brain’s energy crisis. Science 280:1345–1347

    Article  PubMed  CAS  Google Scholar 

  • Gittleman JL (1986) Carnivore brain size, behavioral ecology, and phylogeny. J Mammal 67:23–36

    Article  Google Scholar 

  • Goldspink CR, Holland RK, Sweet G, Stewart L (2002) A note on group sizes of oribi (Ourebia ourebi, Zimmermann, 1783) from two contrasting sites in Zambia, with and without predation. Afr J Ecol 40:372–378

    Article  Google Scholar 

  • Gordon IJ, Illius AW (1994) The functional-significance of the browser-grazer dichotomy in african ruminants. Oecologia 98:167–175

    Article  Google Scholar 

  • Gordon IJ, Illius AW (1996) The nutritional ecology of african ruminants—a reinterpretation. J Animal Ecol 65:18–28

    Article  Google Scholar 

  • Grafen A (1989) The phylogenetic regression. Philosophical transactions of the Royal Society of London Series. B Biol Sci 326:119–157

    Article  CAS  Google Scholar 

  • Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology. Oxford University Press, Oxford

    Google Scholar 

  • Hemmer H (1979) Socialization by intelligence: social behavior in carnivores as a function of relative brain size and environment. Carnivore 2:102–105

    Google Scholar 

  • Herre W, Thiede U (1965) Studien an Gehirnen südamerikanischer Tylopoden. Zoologischer Anzeiger 81:155–176

    Google Scholar 

  • Hofman MA (1983) Evolution of the brain in neonatal and adult placental mammals: a theoretical approach. J Theoretic Biol 105:317–322

    Article  CAS  Google Scholar 

  • Hofmann RR (1989) Evolutionary steps of ecophysiological adaptation and diversification of ruminants—a comparative view of their digestive-system. Oecologia 78:443–457

    Article  Google Scholar 

  • Honda K, Tatsukawa R, Miura S (1987) Body and Organ Weights of Free-Ranging Japanese Serow. J Wildl Manag 51:678–680

    Article  Google Scholar 

  • Hrdlicka A (1905) Brain weight in vertebrates. Smithsonian miscellaneous collections 48:89–112

    Google Scholar 

  • Iwaniuk AN, Arnold KE (2004) Is cooperative breeding associated with bigger brains? A comparative test in the Corvida (Passeriformes). Ethology 110:203–220

    Article  Google Scholar 

  • Janis CM, Scott KM (1988) The phylogeny of the Ruminantia (Artiodactyla, Mammalia). In: Benton MJ (ed) The phylogeny and classification of the tetrapods, Volume 2: Mammals. Systematics Association Special Volume 35B Clarendon Press, Oxford, pp 273–282

    Google Scholar 

  • Janis CM, Damuth J, Theodor JM (2000) Miocene ungulates and terrestrial primary productivity: where have all the browsers gone? In: Proceedings of the National Academy of Sciences of the United States of America 97:7899–7904

  • Kingdon J (1982) East African mammals. An atlas of evolution in Africa. Bovids. Academic Press, London

    Google Scholar 

  • Klemmt L (1960) Quantitative Untersuchungen an Apodemus sylvaticus L. 1758. Zoologischer Anzeiger 165:275

    Google Scholar 

  • Krasinska M, Krasinski ZA (2002) Body mass and measurements of the European bison during postnatal development. Acta Theriologica 47:85–106

    Article  Google Scholar 

  • Kretschmann HJ (1966) Über die Cerebralisation eines Nestflüchters (Acomys cahirinus dimidiatus Cretzschmar 1826) im Vergleich mit Nesthockern (Albiomanus, Apodemus sylvaticus, Linnaeus 1758, und Albinoratte). Morphologisches Jahrbuch 109:376–410

    Google Scholar 

  • Kruska D (1973) Cerebralisation, Hirnevolution und domestikationsbedingte Hirngrößenänderungen innerhalb der Ordnung Perissodactyla Owen, 1848 und ein Vergleich mit der Ordnung Artiodactyla Owen, 1848. Zeitschrift fuer Zoologische Systematik und Evolutionsforschung 11:81–103

    Article  Google Scholar 

  • Kruska D (1987) How fast can total brain size change in mammals? J fuer Hirnforschung 28:59–70

    CAS  Google Scholar 

  • Mace GM (1979) The evolutionary ecology of small mammals. PhD. Thesis, University of Sussex.

  • Mace GM, Harvey PH, Clutton-Brock TH (1980) Is brain size an ecological variable? Trends NeuroSci 1980:193–196

    Article  Google Scholar 

  • Mace GM, Harvey PH, Clutton-Brock TH (1981) Brain size and ecology in small mammals. J Zool 193:333–354

    Article  Google Scholar 

  • Martin RD. Human brain evolution in an ecological context, New York, 1983. Fifty-second James Arthur lecture on the evolution of the human brain, 1–58. 1983. New York, American Museum of Natural History.

  • Martin RD (1981) Relative brain size and basal metabolic rate in terrestrial vertebrates. Nature 293:57–60

    Article  PubMed  CAS  Google Scholar 

  • Martin RD (1984) Body size, brain size and feeding strategies in primates. In: Chivers DJ, Wood B, Bilsborough A (eds) Food acquisition and processing in Primates. Plenum Press, London, pp 73–103

    Chapter  Google Scholar 

  • Martin RD, Harvey PH (1985) Brain size allometry: ontogeny and phylogeny. In: Jungers WL (ed) Size and scaling in primate biology. Plenum Press, New York, pp 147–173

    Chapter  Google Scholar 

  • Mirza SN, Provenza FD (1992) Effects of age and conditions of exposure on maternally mediated food selection by lambs. Appl Anim Behav Sci 33:35–42

    Article  Google Scholar 

  • Molvar EM, Bowyer RT (1994) Costs and benefits of group living in a recently social ungulate—the alaskan moose. J Mammal 75:621–630

    Article  Google Scholar 

  • Mysterud A (1998) The relative roles of body size and feeding type on activity time of temperate ruminants. Oecologia 113:442–446

    Article  Google Scholar 

  • Nowak RM (1999) Walker’s mammals of the world. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Oboussier H (1974a) Beiträge zur Kenntnis afrikanischer Gezellen unter besonderer Berücksichtigung des Körperbaus, der Hypophyse und der Hirngröße. Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut 71:235–257

    Google Scholar 

  • Oboussier H (1974b) Zur Kenntnis der Hippotraginae (Bovidae, Mammalia) unter besonderer Berücksichtigung von Körperbau, Hypophyse und Hirn. Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut 71:203–233

    Google Scholar 

  • Ovadia O, Dohna HZ (2003) The effect of intra- and interspecific aggression on patch residence time in Negev Desert gerbils: a competing risk analysis. Behav Ecol 14:583–591

    Article  Google Scholar 

  • Owen-Smith N (1991) Grazers and browsers: ecological and social contrasts among African ruminants. In: Ongules/ungulates 91 pp 175–181

  • Owen-Smith N (1997) Distinctive features of the nutritional ecology of browsing versus grazing ruminants. Zeitschrift Fur Saugetierkunde-International Journal of Mammalian Biology 62:176–191

    Google Scholar 

  • Pagel MD (1992) A method for the analysis of comparative data. J Theoretic Biol 156:431–442

    Article  Google Scholar 

  • Pagel MD, Harvey PH (1988) How mammals produce larger-brained offspring. Evolution 42:948–957

    Article  Google Scholar 

  • Peltier TC, Barboza PS (2003) Growth in an Arctic grazer: effects of sex and dietary nitrogen on yearling muskoxen. J Mammal 84:915–925

    Article  Google Scholar 

  • Pérez-Barbería FJ, Gordon IJ (1998) The influence of sexual dimorphism in body size and mouth morphology on diet selection and sexual segregation in cervids. Acta Veterinaria Hungarica 46:357–367

    PubMed  Google Scholar 

  • Pérez-Barbería FJ, Gordon IJ (1999) The relative roles of phylogeny, body size and feeding style on the activity time of temperate ruminants: a reanalysis. Oecologia 120:193–197

    Article  Google Scholar 

  • Pérez-Barbería FJ, Gordon IJ (2000) Differences in body mass and oral morphology between the sexes in the Artiodactyla: evolutionary relationships with sexual segregation. Evol Ecol Res 2:667–684

    Google Scholar 

  • Pérez-Barbería FJ, Gordon IJ (2001) Relationships between oral morphology and feeding style in the Ungulata: a phylogenetically controlled evaluation. In: Proceedings of the Royal Society of London Series B. Biol Sci 268:1023–1032

  • Pérez-Barbería FJ, Gordon IJ, Illius AW (2001a) Phylogenetic analysis of stomach adaptation in digestive strategies in African ruminants. Oecologia 129:498–508

    Article  PubMed  Google Scholar 

  • Pérez-Barbería FJ, Gordon IJ, Nores C (2001b) Evolutionary transitions among feeding styles and habitats in ungulates. Evol Ecol Res 3:221–230

    Google Scholar 

  • Pérez-Barbería FJ, Gordon IJ, Pagel M (2002) The origins of sexual dimorphism in body size in ungulates. Evolution 56:1276–1285

    Article  PubMed  Google Scholar 

  • Pérez-Barbería FJ, Elston DA, Gordon IJ, Illius AW (2004) The evolution of phylogenetic differences in the efficiency of digestion in ruminants. In: Proceedings of the Royal Society of London Series B. 271:1081–1090

  • Pullian HR, Caraco T (1984) Living in groups: is there optimal group size? In: Krebs JR, Davies Balckwell NB (eds) Behavioural Ecology. An Evolutionary Approach Scientific Publications, pp 122–147

  • Quiring DP (1938) A comparison of certain gland, organ and body weights in some African ungulates and the African elephant. Growth 2:335–346

    Google Scholar 

  • Randi E, Mucci N, Claro-Hergueta F, Bonnet A, Douzery EJP (2001) A mitochondrial DNA control region phylogeny of the Cervinae: speciation in Cervus and implications for conservation. Anim Conserv 4:1–11

    Article  Google Scholar 

  • Ringberg TM, White RG, Holleman DF, Luick JR (1981) Body Growth and Carcass Composition of Lean Reindeer (Rangifer tarandus tarandus L) from Birth to Sexual Maturity. Can J Zool Rev Can Zool 59:1040–1044

    Article  Google Scholar 

  • Röhrs M, Ebinger P (1978) Die Beurteilung von Hirngrößenunterschieden zwischen Wild- und Haustieren. Zeitschrift fuer Zoologische Systematik und Evolutionsforschung 16:1–14

    Article  Google Scholar 

  • Ronnefeld U (1970) Morphologische und quantitative Neocortexuntersuchungen bei Boviden, ein Beitrag zur Phylogenie dieser Familie. I. Formen mittlerer Körpergrösse (25 kg bis 75 kg). Gegenbaurs morphologisches Jahrbuch 115:161–230

    Google Scholar 

  • Rushton JP, Ankney CD (1996) Brain size and cognitive ability: correlations with age, sex, social class, and race. Psychonomic Bull Rev 3:21–36

    Article  CAS  Google Scholar 

  • Sacher GA, Staffeldt EF (1974) Relation of gestion time to brain weight for placental mammals: implications for the theory of vertebrate growth. Am Nat 108:593–615

    Article  Google Scholar 

  • Sigmund L (1981) Morphometrische untersuchungen an Gehirnen der Wiederkäuer (Ruminantia, Artiodactyla, Mammalia). Die Hirn-Körpergewichtsbeziehung der Hirschferkel (Tragulidae). Acta Universitatis Carolinae - Biologica 1979:447–463

    Google Scholar 

  • Spector WS (1956) Handbook of biological data. W.B. Saunders Co., Philadelphia and London

    Google Scholar 

  • Stamps JA (1993) Sexual size dimorphism in species with asymptotic growth after maturity. Biol J Linn Soc 50:123–145

    Article  Google Scholar 

  • Tabachnick BG, Fidell LS (1989) Using multivariate statistics. Harper Collins Publishers Inc, New York

    Google Scholar 

  • Underwood R (1982) Vigilance behaviour in grazing African antelopes. Behaviour 79:81–107

    Article  Google Scholar 

  • Van Wieren SE (1996) Digestive strategies in ruminants and nonruminants. University of Wageningen, Wageningen

    Google Scholar 

  • van Soest PJ (1996) Allometry and ecology of feeding-behavior and digestive capacity in herbivores—a review. Zoo Biol 15:455–479

    Article  Google Scholar 

  • von Bonin G (1937) Brain weight and body weight of mammals. J Gen Physiol 16:379–389

    Google Scholar 

  • von Tyska H (1966) Das Großhirnfurchenbild als Merkmal der Evolution Untersuchungen an Boviden I. Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut 63:121–158

    Google Scholar 

  • Wemmer C, Wilson DE (1987) Cervid brain size and natural history. In: Wemmer CM (ed) Biology and management of the Cervidae. Smithsonian Institution Press, Washington DC and London, pp 189–199

    Google Scholar 

  • White RG, Trudell J (1980) Patterns of herbivory and nutrient intake of reindeer grazing tundra vegetation. In: Reimers E, Gaare A, Skjenneberg S (eds) Proceedings of the 2nd International Reindeer/Caribou symposium. Trondheim, Direktoratet for vilt og ferskvannsfisk pp 180–195

  • Willner LA, Martin RD (1985) Some basic principles of mammalian sexual dimophism. In: Ghesquiere J, Martin RD, Newcombe F (eds) Human Sexual Dimorphism Taylor & Francis, London, Philadelphia, pp 1–42

    Google Scholar 

  • de Winter W, Oxnard CE (2001) Evolutionary radiations and convergences in the structural organization of mammalian brains. Nature 409:710–714

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

David Elston for allowing us to use his programmes and Mairi MacAskill and Betty Duff for helping us with the programming coding. Ray Symonds for access to University Museum of Zoology Cambridge. Juliet Clutton-Brock for access to the Natural History Museum in London. Lorraine Robertson, Elaine Mackenzie, Anke Fisher and Robert Martin for helping us with the literature and an anonymous referee who provided valuable comments to improve the manuscript. The Scottish Executive Environment and Rural Affairs Department funded this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Javier Pérez-Barbería.

Additional information

Communicated by Roland Brandl

Appendix I

Appendix I

Phylogenetic relationships between species, brain mass, body mass, gestation length, diet and gregariousness of the species used in this study. Body mass and brain mass have been averaged within species by pooling sex and individual information in order to present a summarized table of the 422 records used in the analyses (the complete data set can be obtained from the authors on request). Diet was represented by the percentages of grass, browse and fruit in the animals' diet in field conditions. The percentages of grass, browse and fruit are averaged values from references in the literature (see Methods). a. percentages of grass and browse in diet estimated by qualitative information from Nowak (1999). Gregariousness, 1. gregarious species; 0. non-gregarious species, information from, a. (Nowak 1999); b. (Brashares et al. 2000); c. (Goldspink et al. 2002). Gestation ref., sources used to estimate the gestation length: 1. Nowak 1999; 2. http://animaldiversity.ummz.umich.edu/; 3. http://www.ultimateungulate.com; 4. http://medicine.ucsd.edu/; 5. http://www.djuma.com; 6. http://www.americazoo.com. Source ref., information on brain masses come from the following references: 1. Graham A.J. Worthy (pers. comm.); 2. (Anderson et al. 1974); 3. Toni Milewski (pers. comm.); 4. (Herre and Thiede 1965); 5. (Honda et al. 1987); 6. (Hrdlicka 1905); 8. (Oboussier 1974a, b); 9. (Quiring 1938); 10. (Ronnefeld 1970);11. (Sigmund 1981);12. (von Tyska 1966); 13. (Wemmer and Wilson 1987); 14. D. Willianson (pers. comm.); 15. IJG's data base (Museum of Comparative Zoology, Cambridge University, Cambridge, U.K.); 16. (Crile and Quiring 1940); 17. (Spector 1956); 18. (Altmann and Dittmer 1972); 19. (Sacher and Staffeldt 1974); 20. (Quiring 1938); 21. (von Bonin 1937).

Fig. 2
figure 2

 

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez-Barbería, F.J., Gordon, I.J. Gregariousness increases brain size in ungulates. Oecologia 145, 41–52 (2005). https://doi.org/10.1007/s00442-005-0067-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-005-0067-7

Keywords

Navigation