Skip to main content
Log in

An ESR, Mass Spectrometry and Fluorescence Microscopy Approach to Study the Stearic Acid Derivatives Anchoring in Cells

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Lateral phase separations in biological membranes are of great interest, making electron spin resonance (ESR) spectroscopy combined with spin labeling a nondestructive and sensitive technique for the study of lipid rafts. It is currently accepted that the spin probe is localized on the plasma membrane. However, no study confirms this hypothesis. Herein, we report, for the first time, an accurate multispectral method for the quantification of the lipid spin label presence in every subcellular fraction. Cells were incubated with the 5-DOXYL stearic acid derivative and then subfractionated. Results of our multimodal spectroscopy approach ubiquitously demonstrate that the ESR spin label presence only sets in the plasma membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. L. Weglarz, A. Koceva-Chyla, K. Gwodzdzinski, Z. Dzierzewics, Z. Jozwiak, Biochim. 85, 549–556 (2003)

    Article  Google Scholar 

  2. S.J. Singer, G.L. Nicholson, Sciences 175, 720–731 (1972)

    Article  Google Scholar 

  3. K. Simons, E. Ikonen, Nature 387, 569–572 (1997)

    Article  ADS  Google Scholar 

  4. L.D. Zajchowski, S.M. Robbins, Eur. J. Biochem. 269, 737–752 (2002)

    Article  Google Scholar 

  5. W.K. Subczynski, A. Kusumi, Biochem. Biophys. A1610, 231–243 (2003)

    Google Scholar 

  6. M.G. Rivas, A.M. Gennarlo, Chem. Phys. Lipids 122, 165–169 (2003)

    Article  Google Scholar 

  7. K. Kawasaki, W.K. Subczynski, J.S. Hyde, A. Kusumi, Biophys. J. 80, 738–748 (2001)

    Article  Google Scholar 

  8. L.J. Pike, J. Lipid Res. 47, 1597–1598 (2006)

    Article  Google Scholar 

  9. M.L. Berkowitz, Biochim. Biophys. A1788, 86–96 (2009)

    Article  Google Scholar 

  10. K. Murase, T. Fujiwara, Y. Umemura, K. Suzuki, R. Iino, H. Yamashita, M. Saito, H. Murakoshi, K. Ritchie, A. Kusumi, Biophys. J. 86, 4075–4093 (2004)

    Article  Google Scholar 

  11. M.J. Saxton, K. Jacobson, Annu. Rev. Biomol. Struct. 26, 373–399 (1997)

    Article  Google Scholar 

  12. J.P. Slotte, Biochim. Biophys. A1235, 419–427 (1995)

    Article  Google Scholar 

  13. G.H. Rothblat, F.H. Mahlberg, W.J. Johnson, M.C. Phillips, J. Lipid Res. 33, 1091–1097 (1992)

    Google Scholar 

  14. K. Kawasaki, J.J. Yin, W.K. Subczynski, J.S. Hyde, A. Kusumi, Biophys. J. 80, 738–748 (2001)

    Article  Google Scholar 

  15. Z. Arsov, M. Nemec, M. Schara, H. Johansson, U. Langel, M. Zorko, J. Pept. Sci. 14, 1303–1308 (2008)

    Article  Google Scholar 

  16. A. Grammenos, A. Mouithys-Mickalad, P.-H. Guelluy, M. Lismont, G. Piel, M. Hoebeke, Biochem. Biophys. Res. Commun. 398, 350–354 (2010)

    Article  Google Scholar 

  17. P.F. Knowles, D. Marsh, H.W.E. Rattle, Magnetic resonance of biomolecules (Wiley, New York, 1976)

    Google Scholar 

  18. J. Strancar, T. Koklic, Z. Arsov, B. Filipic, D. Stopar, M.A. Hemminga, J. Chem. Inf. Model. 45, 394–406 (2005)

    Article  Google Scholar 

  19. A. Grammenos, M.A. Bahri, P.H. Guelluy, G. Piel, M. Hoebeke, Biochem. Biophys. Res. Commun. 390, 5–9 (2009)

    Article  Google Scholar 

  20. M.A. Bahri, A. Seret, P. Hans, J. Piette, G. Deby-Dupont, M. Hoebeke, Biophys. Chem. 129, 82–91 (2007)

    Article  Google Scholar 

  21. K. Gorski, M. Carneiro, U. Schibler, Cell 47, 767–776 (1986)

    Article  Google Scholar 

  22. G.D. Mazzucchelli, V. Gabelica, N. Smargiasso, M. Fléron, W. Ashimwe, F. Rosu, M.C. De Pauw-Gillet, J.F. Riou, E. De Pauw, Proteome Sci. 6, 12 (2008)

    Article  Google Scholar 

  23. D. Voet, J. Voet, Biochimie, 2nd edn. (De Boeck Université s. a, Paris, 1998)

    Google Scholar 

  24. G.R. Eaton, S.S. Eaton, D. Barr, R. Weber, Quantitative EPR (Springer Wien, New York, 2009)

  25. D. Mihelcic, P. Mlisgen, J. Atmos. Chem. 3, 341–361 (1985)

    Article  Google Scholar 

  26. T. Risse, T. Hill, J. Schmidt, G. Abend, H. Hamann, H.-J. Freund, J. Phys. Chem. B 102, 2668–2676 (1998)

    Article  Google Scholar 

  27. T. Levine, Trends Cell Biol. 14(9), 483–490 (2004)

    Article  Google Scholar 

  28. T. Levine, C. Loewen, Curr. Opin. Cell Biol. 18, 371–378 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

We offer special thanks to Dr. Mazzucchelli, from the Laboratory of Mass Spectrometry (GIGA-R and CART, University of Liège, Belgium), for his advice in terms of expert knowledge in the field of cell subfractionation. We also thank Dr. DePauw-Gillet, from the Laboratory of Histology–Cytology (University of Liège, Belgium) for her help and advice on cell extraction. The authors thank Dr. Mouithys-Mickalad for his scientific advice. We offer special thanks to Mr. Cobraiville for his help in the achievement of extractions. M.C. benefited from a FRIA (FNRS) PhD fellowship. M.F. is a research associate at F.R.S.-FNRS (National Fund for Scientific Research). We thank the FNRS for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Grammenos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grammenos, A., Fillet, M., Collodoro, M. et al. An ESR, Mass Spectrometry and Fluorescence Microscopy Approach to Study the Stearic Acid Derivatives Anchoring in Cells. Appl Magn Reson 43, 311–320 (2012). https://doi.org/10.1007/s00723-012-0375-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-012-0375-0

Keywords

Navigation