Issue 39, 2015

Diastereo-specific conformational properties of neutral, protonated and radical cation forms of (1R,2S)-cis- and (1R,2R)-trans-amino-indanol by gas phase spectroscopy

Abstract

Chirality effects on the intramolecular interactions strongly depend on the charge and protonation states. Here, the influence of chirality on the structure of the neutral, protonated, and radical cation forms of (1R,2S)-cis- and (1R,2R)-trans-1-amino-2-indanol diastereomers, prototypical molecules with two chiral centers, is investigated in a molecular beam by laser spectroscopy coupled with quantum chemical calculations. The neutral systems are structurally characterised by double resonance IR-UV spectroscopy, while IR-induced dissociation spectroscopy is employed for the charged molecules. The sterical constraints due to the cyclic nature of the molecule emphasise the chirality effects, which manifest themselves by the formation of an intramolecular hydrogen bond in neutral or protonated (1R,2S)-cis-amino-indanol. In contrast, this interaction is not possible in (1R,2R)-trans-amino-indanol. In the protonated species, chirality also influences the spectroscopic probes in the NH/OH stretch range by fine-tuning subtle effects such as the hyperconjugation between the σ(OH) orbital and σ* orbitals localised on the alicyclic ring. The radical cation undergoes opening of the alicyclic ring, which results in an ionisation-induced loss of the chirality effects.

Graphical abstract: Diastereo-specific conformational properties of neutral, protonated and radical cation forms of (1R,2S)-cis- and (1R,2R)-trans-amino-indanol by gas phase spectroscopy

Supplementary files

Article information

Article type
Paper
Submitted
29 Jan 2015
Accepted
07 Apr 2015
First published
09 Apr 2015

Phys. Chem. Chem. Phys., 2015,17, 25809-25821

Diastereo-specific conformational properties of neutral, protonated and radical cation forms of (1R,2S)-cis- and (1R,2R)-trans-amino-indanol by gas phase spectroscopy

A. Bouchet, J. Klyne, G. Piani, O. Dopfer and A. Zehnacker, Phys. Chem. Chem. Phys., 2015, 17, 25809 DOI: 10.1039/C5CP00576K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements