Skip to main content
Log in

How do fluorescence spectroscopy and multimodal fluorescence imaging help to dissect the enhanced efficiency of the vancomycin–rifampin combination against Staphylococcus aureus infections?

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Staphylococcus aureus is one of the most frequent pathogens responsible for biofilm-associated infections. Among current clinical antibiotics, very few enable long-term successful treatment. Thus, it becomes necessary to better understand antibiotic failures and successes in treating infections in order to master the use of proper antibiotic therapies. In this context, we took benefit from a set of fluorescence spectroscopy and imaging methods, with the support of conventional microbiological tools to better understand the vancomycin–rifampin combination (in)efficiency against S. aureus biofilms. It was shown that both antibiotics interacted by forming a complex. This latter allowed a faster penetration of the drugs before dissociating from each other to interact with their respective biological targets. However, sufficiently high concentrations of free vancomycin should be maintained, either by increasing the vancomycin concentration or by applying repetitive doses of the two drugs, in order to eradicate rifampin-resistant mutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. D. Lowy, J. Clin. Invest., 2003, 111, 1265–1273.

    Article  CAS  Google Scholar 

  2. C. E. Edmiston, A. J. McBain, C. Roberts, and D. Leaper, Adv. Exp. Med. Biol., 2015, 830, 47–67.

    Article  Google Scholar 

  3. H.-C. Flemming, and J. Wingender, Nat. Rev. Microbiol., 2010, 8, 623–633.

    Article  CAS  Google Scholar 

  4. P. A. Smith, and F. E. Romesberg, Nat. Chem. Biol., 2007, 3, 549–556.

    Article  CAS  Google Scholar 

  5. H. Van Acker, P. Van Dijck, and T. Coenye, Trends Microbiol., 2014, 22, 326–333.

    Article  Google Scholar 

  6. I. Levin-Reisman, I. Ronin, O. Gefen, I. Braniss, N. Shoresh, and N. Q. Balaban, Science, 2017, eaaj2191.

    Google Scholar 

  7. V. Kostenko, H. Ceri, and R. J. Martinuzzi, FEMS Immunol. Med. Microbiol., 2007, 51, 277–288.

    Article  CAS  Google Scholar 

  8. K. L. LaPlante, and S. Woodmansee, Antimicrob. Agents Chemother., 2009, 53, 3880–3886.

    Article  CAS  Google Scholar 

  9. S. Deresinski, Clin. Infect. Dis., 2009, 49, 1072–1079.

    Article  CAS  Google Scholar 

  10. H.-J. Tang, C.-C. Chen, K.-C. Cheng, K.-Y. Wu, Y.-C. Lin, C.-C. Zhang, T.-C. Weng, W.-L. Yu, Y.-H. Chiu, H.-S. Toh, S.-R. Chiang, B. A. Su, W.-C. Ko, and Y.-C. Chuang, Antimicrob. Agents Chemother., 2013, 57, 5717–5720.

    Article  CAS  Google Scholar 

  11. O. Cirioni, F. Mocchegiani, R. Ghiselli, C. Silvestri, E. Gabrielli, E. Marchionni, F. Orlando, D. Nicolini, A. Risaliti, and A. Giacometti, Eur. J. Vasc. Endovasc. Surg., 2010, 40, 817–822.

    Article  CAS  Google Scholar 

  12. S. M. Jones, M. Morgan, T. J. Humphrey, and H. Lappin-Scott, Lancet, 2001, 357, 40–41.

    Article  CAS  Google Scholar 

  13. D. C. Bean, and S. M. Wigmore, mBio, 2015, 6, e00120–e00115.

    Article  Google Scholar 

  14. G. N. Forrest, and K. Tamura, Clin. Microbiol. Rev., 2010, 23, 14–34.

    Article  CAS  Google Scholar 

  15. W. Zimmerli, R. Frei, A. F. Widmer, and Z. Rajacic, J. Antimicrob. Chemother., 1994, 33, 959–967.

    Article  CAS  Google Scholar 

  16. W. Wehrli, Rev. Infect. Dis., 1983, 5, S407–S411.

    Article  CAS  Google Scholar 

  17. J. C. Barna, and D. H. Williams, Annu. Rev. Microbiol., 1984, 38, 339–357.

    Article  CAS  Google Scholar 

  18. J. A. Niska, J. H. Shahbazian, R. I. Ramos, K. P. Francis, N. M. Bernthal, and L. S. Miller, Antimicrob. Agents Chemother., 2013, 57, 5080–5086.

    Article  CAS  Google Scholar 

  19. D. C. Coraça-Huber, M. Fille, J. Hausdorfer, K. Pfaller, and M. Nogler, J. Appl. Microbiol., 2012, 112, 1235–1243.

    Article  Google Scholar 

  20. F. D. Lowy, D. S. Chang, and P. R. Lash, Antimicrob. Agents Chemother., 1983, 23, 932–934.

    Article  CAS  Google Scholar 

  21. P. Vergidis, M. S. Rouse, G. Euba, M. J. Karau, S. M. Schmidt, J. N. Mandrekar, J. M. Steckelberg, and R. Patel, Antimicrob. Agents Chemother., 2011, 55, 1182–1186.

    Article  CAS  Google Scholar 

  22. C. Watanakunakorn, and J. C. Guerriero, Antimicrob. Agents Chemother., 1981, 19, 1089–1091.

    Article  CAS  Google Scholar 

  23. A. H. Salem, W. F. Elkhatib, and A. M. Noreddin, J. Pharm. Pharmacol., 2011, 63, 73–79.

    Article  CAS  Google Scholar 

  24. G. L. Simon, R. H. Smith, and M. A. Sande, Rev. Infect. Dis., 1983, 5, Suppl. 3, S507–S508.

    Article  Google Scholar 

  25. S. Tremblay, T. T. Y. Lau, and M. H. H. Ensom, Ann. Pharmacother., 2013, 47, 1045–1054.

    Article  Google Scholar 

  26. D. J. Riedel, E. Weekes, and G. N. Forrest, Antimicrob. Agents Chemother., 2008, 52, 2463–2467.

    Article  CAS  Google Scholar 

  27. A. S. van der Horst, S. Medda, E. Ledbetter, A. Liu, P. Weinhold, D. J. Del Gaizo, and L. Dahners, J. Orthop. Res., 2015, 33, 1320–1326.

    Article  Google Scholar 

  28. S. Daddi Oubekka, R. Briandet, M.-P. Fontaine-Aupart, and K. Steenkeste, Antimicrob. Agents Chemother., 2012, 56, 3349–3358.

    Article  CAS  Google Scholar 

  29. R. Boudjemaa, R. Briandet, M. Revest, C. Jacqueline, J. Caillon, M.-P. Fontaine-Aupart, and K. Steenkeste, Antimicrob. Agents Chemother., 2016, 60, 4983–4990.

    Article  CAS  Google Scholar 

  30. P. S. Stewart, J. Bacteriol., 2003, 185, 1485–1491.

    Article  CAS  Google Scholar 

  31. S. Daddi Oubekka, R. Briandet, F. Waharte, M.-P. Fontaine-Aupart, and K. Steenkeste, in Proc. SPIE 8087, Clinical and Biomedical Spectroscopy and Imaging II, 80871I, ed. N. Ramanujam and J. Popp, 2011, pp. 80871I–1–80871I–7.

  32. F. Waharte, K. Steenkeste, R. Briandet, and M.-P. Fontaine-Aupart, Appl. Environ. Microbiol., 2010, 76, 5860–5869.

    Article  CAS  Google Scholar 

  33. A. Tupin, M. Gualtieri, F. Roquet-Banères, Z. Morichaud, K. Brodolin, and J.-P. Leonetti, Int. J. Antimicrob. Agents, 2010, 35, 519–523.

    Article  CAS  Google Scholar 

  34. N. Høiby, T. Bjarnsholt, M. Givskov, S. Molin, and O. Ciofu, Int. J. Antimicrob. Agents, 2010, 35, 322–332.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Centre de Photonique Biomédicale (CPBM) of the Centre Laser de l’Université Paris-Sud (CLUPS/LUMAT FR2764, Orsay, France) for the confocal microscope and L2 microbiology facilities, and Rachel Méallet-Renault for the spectrofluorimeter facilities at the Ecole Normale Supérieure (ENS Cachan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rym Boudjemaa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boudjemaa, R., Briandet, R., Fontaine-Aupart, MP. et al. How do fluorescence spectroscopy and multimodal fluorescence imaging help to dissect the enhanced efficiency of the vancomycin–rifampin combination against Staphylococcus aureus infections?. Photochem Photobiol Sci 16, 1391–1399 (2017). https://doi.org/10.1039/c7pp00079k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c7pp00079k

Navigation