Skip to main content
Log in

Improvement in Thermal Stability of Sucralose by γ-Cyclodextrin Metal-Organic Frameworks

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To explain thermal stability enhancement of an organic compound, sucralose, with cyclodextrin based metal organic frameworks.

Methods

Micron and nanometer sized basic CD-MOFs were successfully synthesized by a modified vapor diffusion method and further neutralized with glacial acetic acid. Sucralose was loaded into CD-MOFs by incubating CD-MOFs with sucralose ethanol solutions. Thermal stabilities of sucralose-loaded basic CD-MOFs and neutralized CD-MOFs were investigated using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and high performance liquid chromatography with evaporative light-scattering detection (HPLC-ELSD).

Results

Scanning electron microscopy (SEM) and powder X-ray diffraction (PXRD) results showed that basic CD-MOFs were cubic crystals with smooth surface and uniform sizes. The basic CD-MOFs maintained their crystalline structure after neutralization. HPLC-ELSD analysis indicated that the CD-MOF crystal size had significant influence on sucralose loading (SL). The maximal SL of micron CD-MOFs (CD-MOF-Micro) was 17.5 ± 0.9% (w/w). In contrast, 27.9 ± 1.4% of sucralose could be loaded in nanometer-sized basic CD-MOFs (CD-MOF-Nano). Molecular docking modeling showed that sucralose molecules preferentially located inside the cavities of γ-CDs pairs in CD-MOFs. Raw sucralose decomposed fast at 90°C, with 86.2 ± 0.2% of the compound degraded within only 1 h. Remarkably, sucralose stability was dramatically improved after loading in neutralized CD-MOFs, with only 13.7 ± 0.7% degradation at 90°C within 24 h.

Conclusions

CD-MOFs efficiently incorporated sucralose and maintained its integrity upon heating at elevated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CD-MOFs:

Cyclodextrin metal organic frameworks

CTAB:

Cetyl trimethyl ammonium bromide

DSC:

Differential scanning calorimetry

EtOH:

Ethanol

HPLC-ELSD:

High performance liquid chromatography with evaporative light-scattering detection

MeOH:

Methanol

PXRD:

Powder X-ray diffraction

TGA:

Thermogravimetric analysis

γ-CD:

γ-cyclodextrin

References

  1. Horcajada P, Gref R, Baati T, Allan PK, Maurin G, Couvreur P, et al. Metal-organic frameworks in biomedicine. Chem Rev. 2012;112(2):1232–68.

    Article  CAS  PubMed  Google Scholar 

  2. Lin WB. Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Abstr Papers Am Chem Soc. 2014;248.

  3. Sun CY, Qin C, Wang XL, Su ZM. Metal-organic frameworks as potential drug delivery systems. Expert Opin Drug Deliv. 2013;10(1):89–101.

    Article  PubMed  Google Scholar 

  4. Horcajada P, Serre C, Vallet-Regi M, Sebban M, Taulelle F, Ferey G. Metal-organic frameworks as efficient materials for drug delivery. Angew Chem Int Ed. 2006;45(36):5974–8.

    Article  CAS  Google Scholar 

  5. Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater. 2010;9(2):172–8.

    Article  CAS  PubMed  Google Scholar 

  6. Chalati T, Horcajada P, Couvreur P, Serre C, Ben Yahia M, Maurin G, et al. Porous metal organic framework nanoparticles to address the challenges related to busulfan encapsulation. Nanomedicine. 2011;6(10):1683–95.

    Article  CAS  PubMed  Google Scholar 

  7. Kundu T, Mitra S, Patra P, Goswami A, Diaz DD, Banerjee R. Mechanical downsizing of a gadolinium(III)-based metal-organic framework for anticancer drug delivery. Chem Eur J. 2014;20(33):10514–8.

    Article  CAS  PubMed  Google Scholar 

  8. Sun CY, Qin C, Wang CG, Su ZM, Wang S, Wang XL, et al. Chiral nanoporous metal-organic frameworks with high porosity as materials for drug delivery. Adv Mater. 2011;23(47):5629.

    Article  CAS  PubMed  Google Scholar 

  9. Ananthoji R, Eubank JF, Nouar F, Mouttaki H, Eddaoudi M, Harmon JP. Symbiosis of zeolite-like metal-organic frameworks (rho-ZMOF) and hydrogels: composites for controlled drug release. J Mater Chem. 2011;21(26):9587–94.

    Article  CAS  Google Scholar 

  10. Taylor-Pashow KML, Della Rocca J, Xie ZG, Tran S, Lin WB. Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery. J Am Chem Soc. 2009;131(40):14261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Smaldone RA, Forgan RS, Furukawa H, Gassensmith JJ, Slawin AMZ, Yaghi OM, et al. Metal-organic frameworks from edible natural products. Angew Chemie Int Ed. 2010;49(46):8630–4.

    Article  CAS  Google Scholar 

  12. Su H, Sun F, Jia J, He H, Wang A, Zhu G. A highly porous medical metal-organic framework constructed from bioactive curcumin. Chem Commun. 2015;51(26):5774–7.

    Article  CAS  Google Scholar 

  13. Sontz PA, Bailey JB, Ahn S, Tezcan FA. A metal organic framework with spherical protein nodes: rational chemical design of 3D protein crystals. J Am Chem Soc. 2015;137(36):11598–601.

    Article  CAS  PubMed  Google Scholar 

  14. Yin F, Chen J, Liang Y, Zou Y, Yinzhi J, Xie J. Syntheses, structures, and properties of Co(II)/Zn(II) mixed-ligand coordination polymers based on 4-[(3,5-dinitrobenzoyl)amino]benzoic acid and 1,4-bis(1-imidazolyl) benzene. J Solid State Chem. 2015;225:310–4.

    Article  CAS  Google Scholar 

  15. Agostoni V, Horcajada P, Noiray M, Malanga M, Aykaç A, Jicsinszky L, et al. A “green” strategy to construct non-covalent, stable and bioactive coatings on porous MOF nanoparticles. Sci Rep. 2014;5:7925.

    Article  Google Scholar 

  16. Han SB, Wei YH, Valente C, Forgan RS, Gassensmith JJ, Smaldone RA, et al. Imprinting chemical and responsive micropatterns into metal-organic frameworks. Angew Chemie Int Ed. 2011;50(1):276–9.

    Article  CAS  Google Scholar 

  17. Gassensmith JJ, Kim JY, Holcroft JM, Farha OK, Stoddart JF, Hupp JT, et al. A metal-organic framework-based material for electrochemical sensing of carbon dioxide. J Am Chem Soc. 2014;136(23):8277–82.

    Article  CAS  PubMed  Google Scholar 

  18. Yoon SM, Warren SC, Grzybowski BA. Storage of electrical information in metal-organic-framework memristors**. Angew Chemie Int Ed. 2014;53(17):4437–41.

    Article  CAS  Google Scholar 

  19. Gassensmith JJ, Furukawa H, Smaldone RA, Forgan RS, Botros YY, Yaghi OM, et al. Strong and reversible binding of carbon dioxide in a green metal-organic framework. J Am Chem Soc. 2011;133(39):15312–5.

    Article  CAS  PubMed  Google Scholar 

  20. Forgan RS, Smaldone RA, Gassensmith JJ, Furukawa H, Cordes DB, Li QW, et al. Nanoporous carbohydrate metal-organic frameworks. J Am Chem Soc. 2012;134(1):406–17.

    Article  CAS  PubMed  Google Scholar 

  21. Moussa Z, Hmadeh M, Abiad MG, Dib OH, Patra D. Encapsulation of curcumin in cyclodextrin-metal organic frameworks: dissociation of loaded CD-MOFs enhances stability of curcumin. Food Chem. 2016;212:485–94.

    Article  CAS  PubMed  Google Scholar 

  22. Sharma VK, Oturan M, Kim H. Oxidation of artificial sweetener sucralose by advanced oxidation processes: a review. Environ Sci Pollut Res. 2014;21(14):8525–33.

    Article  CAS  Google Scholar 

  23. Rocha-Selmi GA, Theodoro AC, Thomazini M, Bolini HMA, Favaro-Trindade CS. Double emulsion stage prior to complex coacervation process for microencapsulation of sweetener sucralose. J Food Eng. 2013;119(1):28–32.

    Article  CAS  Google Scholar 

  24. Quinlan ME, Jenner MR. Analysis and stability of the sweetener sucralose in beverages. J Food Sci. 1990;55(1):244–6.

    Article  CAS  Google Scholar 

  25. de Oliveira DN, De MM, Catharino RR. Thermal degradation of sucralose: a combination of analytical methods to determine stability and chlorinated byproducts. Scientific Reports. 2015;5.

  26. Cherukuri SR, Wong LL. Stabilized sucralose complex. In.: US; 1990.

  27. Alai MS, Lin WJ. A novel nanoparticulate system for sustained delivery of acid-labile lansoprazole. Colloids Surf B: Biointerfaces. 2013;111:453–9.

    Article  CAS  PubMed  Google Scholar 

  28. Trott O, Olson AJ. Trott, O and Olson, AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2009;31(2):455–61.

    Google Scholar 

  29. Furukawa Y, Ishiwata T, Sugikawa K, Kokado K, Sada K. Nano- and microsized cubic Gel particles from cyclodextrin metal-organic frameworks. Angew Chemie Int Ed. 2012;51(42):10566–9.

    Article  CAS  Google Scholar 

  30. Beatriz Brizuela A, Beatriz Raschi A, Victoria Castillo M, Leyton P, Romano E, Antonia BS. Theoretical structural and vibrational properties of the artificial sweetener sucralose. Comput Theor Chem. 2013;1008:52–60.

    Article  Google Scholar 

  31. Oliveira DND, Menezes MD, Catharino RR. Thermal degradation of sucralose: a combination of analytical methods to determine stability and chlorinated byproducts. Scientific Reports. 2015;5.

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors are grateful for the financial support from the National Natural Science Foundation of China (No. 81430087) and National Science and Technology Major Project (2013ZX09402103).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dawei Chen, Ruxandra Gref or Jiwen Zhang.

Additional information

Equally contributing authors (N.L. for drug loading, experiments other than HPLC and preparation of the manuscript; T.G. for molecular simulation; B.L. for CD-MOFs preparation; C.W. for HPLC method establishment and validation).

Nana Lv, Tao Guo, Botao Liu and Caifen Wang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 252 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, N., Guo, T., Liu, B. et al. Improvement in Thermal Stability of Sucralose by γ-Cyclodextrin Metal-Organic Frameworks. Pharm Res 34, 269–278 (2017). https://doi.org/10.1007/s11095-016-2059-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-2059-1

KEY WORDS

Navigation