Skip to main content
Log in

Laser fields at flat interfaces: I. Vector potential

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

A model calculating the laser fields at a flat structureless surface taking into account the surface photoelectric effect is presented. The photon is p or transverse magnetic linearly polarized, continuous and its wave length is long, i.e. λ vac  ≥ 12.4 nm. The sharp rise of the electron density at the interface generates an atomic scale spatial dependence of the laser field. In real space and in the temporal gauge, the vector potential A of the laser is obtained as a solution of the classical Ampère-Maxwell and the material equations. The susceptibility is a product of the electron density of the material system with the surface and of the bulk tensor and non-local isotropic (TNLI) polarizability. The electron density is obtained quantum mechanically by solving the Schrödinger equation. The bulk TNLI polarizability including dispersion is calculated from a Drude-Lindhard-Kliewer model. In one dimension perpendicular to the surface the components \hbox{$\mathcal{A}_x(z,\omega)$} 𝒜 x (z,ω) and \hbox{$\mathcal{A}_z(z,\omega)$}𝒜 z (z,ω) of the vector potential are solutions of the Ampère-Maxwell system of two coupled integro-differential equations. The model, called vector potential from the electron density-coupled integro-differential equations (VPED-CIDE), is used here to obtain the electron escape probability from the power density absorption, the reflectance, the electron density induced by the laser and Feibelman’s parameters d and d . Some preliminary results on aluminium surfaces are given here and in a companion paper the photoelectron spectra are calculated with results in agreement with the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Liebsch, Electronic Excitations at Metal Surfaces (Plenum Press, 1997)

  2. S. Hüfner, Photoelectron Spectroscopy (Springer, Berlin, 2003)

  3. W. Schattke, M. Van Hove, F.J. García de Abajo, R. Diez Muino, N. Mannella, Solid-state Photoemission and Related Methods, Theory and Experiment, in Overview of core and valence photoemission, edited by W. Schattke and M.A. Van Hove (Wiley, 2003), pp. 50–115

  4. D. Sarid, W.A. Challener, Modern Introduction to Surface Plasmons (Cambridge University Press, 2010)

  5. G. Raşeev, Eur. Phys. J. D 66, 168 (2012)

    Article  Google Scholar 

  6. G. Mukhopadhyay, S. Lundqvist, Phys. Scr. 17, 69 (1978)

    Article  ADS  Google Scholar 

  7. P. Apell, Phys. Scr. 17, 535 (1978)

    Article  ADS  Google Scholar 

  8. K.L. Kliewer, Surf. Sci. 101, 57 (1980)

    Article  ADS  Google Scholar 

  9. T. Maniv, H. Metiu, J. Chem. Phys. 76, 696 (1982)

    Article  ADS  Google Scholar 

  10. P.J. Feibelman, Prog. Surf. Sci. 12, 287 (1982)

    Article  ADS  Google Scholar 

  11. P. Apell, A. Ljungbert, S. Lundqvist, Phys. Scr. 30, 367 (1984)

    Article  ADS  Google Scholar 

  12. R.R. Gerhardts, K. Kempa, Phys. Rev. B 30, 5704 (1984)

    Article  ADS  Google Scholar 

  13. P. Gies, R.R. Gerhardts, T. Maniv, Phys. Rev. B 35, 458 (1987)

    Article  ADS  Google Scholar 

  14. K. Kempa, W.L. Schaich, Solid State Commun. 61, 357 (1987)

    Article  ADS  Google Scholar 

  15. A.T. Georges, Opt. Commun. 188, 321 (2001)

    Article  ADS  Google Scholar 

  16. D. Samuelsen, W. Schattke, Phys. Rev. B 51, 2537 (1995)

    Article  ADS  Google Scholar 

  17. E.E. Krasovskii, V.M. Silkin, V.U. Nazarov, P.M. Echenique, E.V. Chulkov, Phys. Rev. B 82, 125102 (2010)

    Article  ADS  Google Scholar 

  18. J.A. Heras, Am. J. Phys. 75, 176 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  19. A. Eguiluz, J.J. Quinn, Phys. Rev. B 14, 1347 (1976)

    Article  ADS  Google Scholar 

  20. J.E. Sipe, Surf. Sci. 84, 75 (1979)

    Article  ADS  Google Scholar 

  21. F. Forstmann, H. Stenschke, Phys. Rev. Lett. 38, 1365 (1977)

    Article  ADS  Google Scholar 

  22. F. Forstmann, Z. Phys. B 32, 385 (1979)

    Article  ADS  Google Scholar 

  23. K. Kempa, F. Forstmann, Surf. Sci. 129, 516 (1983)

    Article  ADS  Google Scholar 

  24. K.L. Kliewer, R. Fuchs, Phys. Rev. 172, 607 (1968)

    Article  ADS  Google Scholar 

  25. K.L. Kliewer, R. Fuchs, Phys. Rev. 181, 552 (1969)

    Article  ADS  Google Scholar 

  26. N.D. Mermin, Phys. Rev. B 1, 2362 (1970)

    Article  ADS  Google Scholar 

  27. A. Bagchi, N. Kar, R.G. Barrera, Phys. Rev. Lett. 40, 803 (1978)

    Article  ADS  Google Scholar 

  28. M. Born, E. Wolf, Principle of Optics, 6th edn. (Pergamon Press, Oxford, 1980)

  29. J.D. Jackson, Classical Electrodynamics, 3rd edn. (John Wiley & Sons, New York, 1998)

  30. N.D. Lang, W. Kohn, Phys. Rev. B 1, 4555 (1970)

    Article  ADS  Google Scholar 

  31. C. Kittel, Introduction in Solid State Physics (John Wiley & Sons, New York, 1996)

  32. G. Raşeev, e-J. Surf. Sci. Nanotech. 7, 249 (2009)

    Article  Google Scholar 

  33. G. Raşeev, Mol. Phys. 105, 1769 (2007)

    Article  ADS  Google Scholar 

  34. G. Raşeev, D. Bejan, Opt. Commun. 283, 3976 (2010)

    Article  ADS  Google Scholar 

  35. D.Y. Smith, B. Segall, Phys. Rev. B 34, 5191 (1986)

    Article  ADS  Google Scholar 

  36. R. Sheppard, B. Jordan, E. Grant, J. Phys. D 3, 1759 (1970)

    Article  ADS  Google Scholar 

  37. J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat.-Fys. Medd. 28, 1 (1954)

    MathSciNet  Google Scholar 

  38. K.L. Kliewer, Phys. Rev. B 14, 1412 (1976)

    Article  ADS  Google Scholar 

  39. A. Liebsch, Phys. Scr. 35, 354 (1987)

    Article  ADS  Google Scholar 

  40. A. Liebsch, Phys. Rev. B 36, 7378 (1987)

    Article  ADS  Google Scholar 

  41. L.D. Landau, E.M. Lifshitz, Mécanique Quantique (Mir, Moscow, 1967)

  42. K.L. Kliewer, Phys. Rev. Lett. 33, 900 (1974)

    Article  ADS  Google Scholar 

  43. D.R. Penn, Phys. Rev. B 35, 482 (1987)

    Article  ADS  Google Scholar 

  44. P. Apell, Phys. Scr. 24, 795 (1981)

    Article  ADS  Google Scholar 

  45. A. Zangwill, Physics at Surfaces (Cambridge University Press, Cambridge, 1988)

  46. P.J. Jennings, R.O. Jones, M. Weinert, Phys. Rev. B 37, 6113 (1988)

    Article  ADS  Google Scholar 

  47. E.V. Chulkov, V.M. Silkin, P.M. Echenique, Surf. Sci. 437, 330 (1999)

    Article  ADS  Google Scholar 

  48. J.V. Lill, G.A. Parker, J.C. Light, Chem. Phys. Lett. 89, 483 (1982)

    Article  ADS  Google Scholar 

  49. D.T. Colbert, W.H. Miller, J. Chem. Phys. 96, 1982 (1992)

    Article  ADS  Google Scholar 

  50. L. Brugnano, D. Trigiante, Appl. Numer. Math. 18, 79 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  51. D. Zwillinger, Handbook of Differential Equations (Academic Press, Boston, 1989)

  52. O. Schenk, K. Gärtner, J. Future Gener. Comput. Systems 20, 475 (2004)

    Article  Google Scholar 

  53. O. Schenk, K. Gärtner, Elec. Trans. Numer. Anal. 23, 158 (2006)

    MATH  Google Scholar 

  54. H. Ehrenreich, H.R. Philipp, B. Segall, Phys. Rev. 132, 1918 (1963)

    Article  ADS  Google Scholar 

  55. E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, Orlando, 1985)

  56. E.D. Palik, Handbook of Optical Constants of Solids II (Academic Press, Orlando, 1991)

  57. R.W. Ditchburn, G.H.C. Freeman, Proc. Roy. Soc. Lond. A 294, 20 (1966)

    Article  ADS  Google Scholar 

  58. K.S. Yee, IEEE Trans. Antennas Propag. AP-14, 302 (1966)

    ADS  Google Scholar 

  59. A. Taflove, IEEE Trans. Electromagn. Compat. EMC-22, 191 (1980)

    Article  ADS  Google Scholar 

  60. A.G. Borisov, F.J. García de Abajo, S.V. Shabanov, Phys. Rev. B 71, 075408 (2005)

    Article  ADS  Google Scholar 

  61. W. Pernice, F. Payne, D. Gallagher, Opt. Quantum Electron. 38, 843 (2006)

    Article  Google Scholar 

  62. M. Sukharev, J. Sung, K.G. Spears, T. Seideman, Phys. Rev. B 76, 184302 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Raşeev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raşeev, G. Laser fields at flat interfaces: I. Vector potential. Eur. Phys. J. D 66, 179 (2012). https://doi.org/10.1140/epjd/e2012-20745-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2012-20745-9

Keywords

Navigation