Issue 43, 2017

Towards improved HIV-microbicide activity through the co-encapsulation of NRTI drugs in biocompatible metal organic framework nanocarriers

Abstract

The efficacy of the routinely used anti-HIV (Human Immunodeficiency Virus) therapy based on nucleoside reverse transcriptase inhibitors (NRTIs) is limited by the poor cellular uptake of the active triphosphorylated metabolites and the low efficiency of intracellular phosphorylation of their prodrugs. Nanoparticles of iron(III) polycarboxylate Metal–Organic Frameworks (nanoMOFs) are promising drug nanocarriers. In this study, two active triphosphorylated NRTIs, azidothymidine triphosphate (AZT-Tp) and lamivudine triphosphate (3TC-Tp), were successfully co-encapsulated into the biocompatible mesoporous iron(III) trimesate MIL-100(Fe) nanoMOF in order to improve anti-HIV therapies. The drug loaded nanoMOFs could be stored for up to 2-months and reconstituted after freeze drying, retaining similar physicochemical properties. Their antiretroviral activity was evidenced in vitro on monocyte-derived macrophages experimentally infected with HIV, making these co-encapsulated nanosystems excellent HIV-microbicide candidates.

Graphical abstract: Towards improved HIV-microbicide activity through the co-encapsulation of NRTI drugs in biocompatible metal organic framework nanocarriers

Supplementary files

Article information

Article type
Paper
Submitted
18 Jul 2017
Accepted
29 Sep 2017
First published
29 Sep 2017

J. Mater. Chem. B, 2017,5, 8563-8569

Towards improved HIV-microbicide activity through the co-encapsulation of NRTI drugs in biocompatible metal organic framework nanocarriers

M. T. Marcos-Almaraz, R. Gref, V. Agostoni, C. Kreuz, P. Clayette, C. Serre, P. Couvreur and P. Horcajada, J. Mater. Chem. B, 2017, 5, 8563 DOI: 10.1039/C7TB01933E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements