We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Trends in the development of oral anticoagulants

    Bettina Ralay-Ranaivo

    Institut Galien Paris-Sud CNRS UMR 8612, 5 rue JB Clément, 92296 Châtenay-Malabry Cedex, France

    ,
    Delphine Borgel

    EA 4531 – Ingénierie des protéines de l'hémostase à potentiel thérapeutique, 5 rue JB Clément, 92296 Châtenay-Malabry Cedex, France

    ,
    Patrick Couvreur

    Institut Galien Paris-Sud CNRS UMR 8612, 5 rue JB Clément, 92296 Châtenay-Malabry Cedex, France

    &
    Ruxandra Gref

    *Author for correspondence:

    E-mail Address: ruxandra.gref@u-psud.fr

    Institut Galien Paris-Sud CNRS UMR 8612, 5 rue JB Clément, 92296 Châtenay-Malabry Cedex, France

    Institut of Molecular Sciences, UMR CNRS 8214, Université Paris-Sud, 91405 Orsay, France

    Published Online:https://doi.org/10.4155/tde.15.22

    Anticoagulation remains the therapy of choice for the prevention and treatment of venous and arterial thromboembolic disorders which can cause major organ damage or death. Heparins represent the antithrombotic drugs of choice in short and medium-term prophylaxis and therapy of thromboembolic diseases. Fondaparinux, a synthetic and structural analog of the antithrombin-binding pentasaccharide domain of heparin, has selective anti-Xa activity and longer half-life. However, anticoagulants are poorly absorbed by oral route because of their high molecular weight, hydrophilicity and negative charges. Long-term anticoagulation therapy is problematic because of side effects and frequent monitoring. Formulation approaches are particularly promising.

    Papers of special note have been highlighted as: • of interest

    References

    • 1 Bates SM, Greer IA, Pabinger I, Sofaer S, Hirsh J. American College of Chest Physicians. Venous thromboembolism, thrombophilia, antithrombotic therapy, and pregnancy: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest 133, s844–s886 (2008).
    • 2 Singer DE, Albers GW, Dalen JE, Fang MC, Go AS, Halperin JL et al. Antithrombotic therapy in atrial fibrillation: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest 133, s546–s592 (2008).
    • 3 Fuster V, Rydén LE, Cannom DS et al. 2011 ACCF/AHA/HRS focused updates incorporated into the ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 123, e269–e367 (2011).
    • 4 Lloyd-Jones DM, Wang TJ, Leip EP, Larson MG, Levy D, Vasan RS et al. Lifetime risk for development of atrial fibrillation: the Framingham Heart Study. Circulation 110, 1042–1046 (2004).
    • 5 Cohen AT, Tapson VF, Bergmann JF, Goldhaber SZ, Kakkar AK, Deslandes B et al. Venous thromboembolism risk and prophylaxis in the acute hospital care setting (ENDORSE study): a multinational cross-sectional study. Lancet 371, 387–394 (2008).
    • 6 Gross PL, Weitz JI. New anticoagulants for the treatment of venous thromboembolism. Arterioscler. Thromb. Vasc. Biol. 28, 380–386 (2008).• Comprehensive review on novel anticoagulants.
    • 7 Geerts W, Bergquist D, Pineo GF, Heit JA, Samama CM, Lassen MR et al. Prevention of venous thromboembolism. American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest 133, 381S–453S (2008).
    • 8 Eikelboom JW, Zelenkofske SL, Rusconi CP. Coagulation Factor IXa as a target for treatment and prophylaxis of venous thromboembolism. Arterioscler. Thromb. Vasc. Biol. 30, 382–387 (2010).
    • 9 Mavrakanas T, Bounameaux H. The potential role of new oral anticoagulants in the prevention and treatment of thromboembolism. Pharm. Therap. 130, 46–58 (2011).
    • 10 Hirsh J, Raschke R. Heparin and low-molecular-weight heparin. The Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. Chest 126, s188–s203 (2004).
    • 11 Petitou M, Casu B, Lindahl U. 1976–1983, a critical period in the history of heparin: the discovery of the antithrombin binding site. Biochemie 85, 83–89 (2003).• Comprehensive paper on heparin.
    • 12 Weitz JI, Eikelboom JW, Samama MM. New antithrombotic drugs. Antithrombotic therapy and prevention of thrombosis, 9th edition. American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 141, e120S–e151S (2012).
    • 13 Bauer KA, Hawkins DW, Peters PC et al. Fondaparinux, a synthetic pentasaccharide: the first in a new class of antithrombotic agents – the selective Factor Xa inhibitors. Cardiovasc. Drug. Rev. 20, 37–52 (2002).• Comprehensive article on fondaparinux.
    • 14 Motlekar NA, Youan BB. The quest for non-invasive delivery of bioactive macromolecules: a focus on heparins. J. Control. Release 113, 91–101 (2006).
    • 15 Ramadan A, Lagarce F, Tessier-Marteau, Thomas O, Legras P, Macchi L et al. Oral fondaparinux: use of lipid nanocapsules as nanocarriers and in vivo pharmacokinetic study. Int. J. Nanomed. 6, 2941–2951 (2011).• Efficient in vivo formulation of fondaparinux in lipid capsules.
    • 16 Jaques LB. Heparins: anionic polyelectrolyte drugs. Pharmacol. Rev. 31, 100–166 (1980).
    • 17 Samama MM, Gerotziafas GT. Evaluation of the pharmacological properties and clinical results of the synthetic pentasaccharide (fondaparinux). Thromb. Res. 109, 1–11 (2003).
    • 18 Ansell J, Hirsh J, Hylek E, Jacobson A, Crowther M, Palaretti G. Pharmacology and management of the vitamin K antagonists. American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest 133, s160–s198 (2008).
    • 19 Bauer KA. Recent progress in anticoagulant therapy: oral direct inhibitors of thrombin and Factor Xa. J. Thromb. Haemost. 9, 12–19 (2011).
    • 20 Becattini C, Vedovati MC, Agnelli G. Old and new oral anticoagulants for venous thromboembolism and atrial fibrillation: a review of the literature. Thromb. Res. 129, 392–400 (2012).• Comprehensive review on anticoagulants.
    • 21 Mangiafico RA, Mangiafico M. Emerging anticoagulant therapies in atrial fibrillation: new options, new challenges. Curr. Med. Chem. 19, 4688–4698 (2012).
    • 22 Miesbach W, Seifried E. New direct oral anticoagulants-current therapeutic options and treatment recommendations for bleeding complications. Thromb. Haemost. 108, 1–7 (2012).
    • 23 Paliwal R, Paliwal SR, Agrawal GP, Vyas SP. Recent advances in search of oral heparin therapeutics. Med. Res. Rev. 32, 388–409 (2012a).• Comprehensive review on oral administration of heparin.
    • 24 Jin L, Abrahams JP, Skinner R, Petitou M, Pike RN, Carrell RW. The anticoagulant activation of antithrombin by heparin. Proc. Natl Acad. Sci. USA 94, 14683–14688 (1997).
    • 25 Hirsh J. Current anticoagulant therapy – unmet clinical needs. Thromb. Res. 109(Suppl. 1), s1–s8 (2003).
    • 26 Perzborn E. Factor Xa inhibitors. New anticoagulants for secondary haemostasis. Hämostaseologie 29, 260–267 (2009).
    • 27 Perzborn E, Roehrig S, Straub A, Kubitza D, Misselwitz F. The discovery and development of rivaroxaban, an oral, direct Factor Xa inhibitor. Nat. Rev. Drug Disc. 10, 61–75 (2011).
    • 28 Kaatz S, Korrides PA, Garcia DA, Spyrolous AC, Crowther M, Douketis JD et al. Guidance on the emergent reversal of oral thrombin and Factor Xa inhibitors. Am. J. Hematol. 87, s141–s145 (2012).
    • 29 Roehrig J, Straub A, Pohlmann J, Lampe T, Pernerstorfer J, Schlemmer KH et al. Discovery of the novel antithrombotic agent 5-chloro-N-({(5S)-2-oxo-3-[4-(3-oxomorpholin-4-yl)phenyl]-1,3-oxazolidin-5yl}methyl) thiophene 2 carboxamide (BAY 59–7939): an oral, direct Factor Xa inhibitor. J. Med. Chem. 48, 5900–5908 (2005).
    • 30 Perzborn E, Strassburger A, Wilmen A et al. In vitro and in vivo studies of the novel antithrombotic agent BAY- 59–7939- an oral, direct Factor Xa inhibitor. J. Thromb. Haemost. 3, 514–521 (2005).
    • 31 Kubitza D, Becka M, Wensing G, Voith B, Zuehlsdorf M. Safety, pharmacodynamics, and pharmacokinetics of BAY 59–7939-an oral, direct Factor Xa inhibitor-after multiple dosing in healthy male subjects. Eur. J. Clin. Pharmacol. 61, 873–880 (2005a).
    • 32 Kubitza D, Becka M, Voith B, Zuehlsdorf M, Wensing G. Safety, pharmacodynamics, and pharmacokinetics of single doses of BAY 59–7939, an oral, direct Factor Xa inhibitor. Clin. Pharmacol. Ther. 78, 412–421 (2005b).
    • 33 Ufer M. Comparative efficacy and safety of the novel oral anticoagulants dabigatran, rivaroxaban and apixaban in preclinical and clinical development. Thromb. Haemost. 103, 572–585 (2010).
    • 34 Connolly SJ, Ezekowitz MD, Yusuf S, Eikelboom E, Oldgren J, Parekh A et al. Dabigatran versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 361, 1139–1151 (2009).
    • 35 Nutescu E, Chuatrisorn I, Hellenbart E. Drug and dietary interactions of warfarin and novel oral anticoagulants: an update. J. Thromb. Thromb. 31, 326–343 (2011).
    • 36 Hauel NH, Nar H, Priepke H, Ries U, Stassen JM, Wienen W. Structure-based design of novel potent nonpeptide thrombin inhibitors. J. Med. Chem. 45, 1757–1766 (2002).
    • 37 Wienen W, Stassen JM, Priepke H et al. In-vitro profile and ex-vivo anticoagulant activity of the direct thrombin inhibitor dabigatran and its orally active prodrug, dabigatran etexilate. Thromb. Haemost. 98, 155–162 (2007).
    • 38 Blech S, Ebner T, Ludwig-Schwellinger E, Stangier J, Roth W. The metabolism and disposition of the oral direct thrombin inhibitor, dabigatran, in humans. Drug Metab. Disp. 36, 386–399 (2008).
    • 39 Stangier J, Rathgen K, Stähle H, Gansser D, Roth W. The pharmacokinetics, pharmacodynamics and tolerability of dabigatran etexilate, a new oral direct thrombin inhibitor, in healthy male subjects. Br. J. Clin. Pharmacol. 64, 292–303 (2007).
    • 40 Ahrens I, Peter K, Lip GY, Bode C. Development and clinical applications of novel oral anticoagulants. Part II. Drugs under clinical investigation. Discov. Med. 13, 445–450 (2012).
    • 41 Holster IL, Valkhoff VE, Kuipers EJ, Tjwa ET. New oral anticoagulants increase risk for gastrointestinal bleeding: a systematic review and meta-analysis. Gastroenterology 145(1), 105–112 (2013).
    • 42 Cuker A, Siegal DM, Crowther MA, Garcia DA. Laboratory measurement of the anticoagulant activity of the non-vitamin K oral anticoagulants. J. Am. Coll. Cardiol. 64(11), 1128–1139 (2014).
    • 43 Honickel M, Treutler S, van Ryn J, Tillmann S, Rossaint R, Grottke O. Reversal of dabigatran anticoagulation ex vivo: porcine study comparing prothrombin complex concentrates and idarucizumab. Thromb. Haemost. 113(4), (2015).
    • 44 Lu G, DeGuzman FR, Hollenbach SJ et al. A specific antidote for reversal of anticoagulation by direct and indirect inhibitors of coagulation Factor Xa. Nat. Med. 19(4), 446–451 (2013).
    • 45 Bianchini EP, Fazavana J, Picard V, Borgel D. Development of a recombinant antithrombin variant as a potent antidote to fondaparinux and other heparin derivatives. Blood 117, 2054–2060 (2011).
    • 46 Petitou M, Nancy-Portebois V, Dubreucq G, Motte V, Meuleman D, de Kort M et al. From heparin to EP217609: The long way to a new pentasaccharide-based neutralisable anticoagulant with an unprecedented pharmacological profile. Thromb. Haemost. 102, 804–810 (2009).
    • 47 Weitz DS, Weitz JI. Update on heparin: what do we need to know? J. Thromb. Thrombol. 29, 199–207 (2010).
    • 48 Chong BH, Isaacs A. Heparin-induced thrombocytopenia: what clinicians need to know. Thromb. Haemost. 101, 279–283 (2009).
    • 49 Moazed B, Hiebert LM. Movement of heparins across rat gastric mucosa is dependent on molecular weight and pH. Pharm. Res. 26, 189–195 (2009).
    • 50 Goldberg M, Gomez-Orellana I. Challenges for the oral delivery of macromolecules. Nat. Rev. Drug Disc. 2, 289–295 (2003).
    • 51 Motlekar NA, Srivenugopal KS, Wachtel MS, Youan BB. Oral delivery of low-molecular-weight heparin using sodium decanoate as absorption enhancer reaches therapeutic levels. J. Drug Target. 13, 573–583 (2005).
    • 52 Rivera TM, Leone-Bay A, Paton DR, Leipold HR, Baughman RA. Oral delivery of heparin in combination with sodium N-[8-(2-hydroxybenzoyl) amino]caprylate: pharmacological considerations. Pharm. Res. 14, 1830–1834 (1997).
    • 53 Leone-Bay A, Paton D, Variano B, Leipold H, Rivera T, Miura-Fraboni J et al. Acylated non-α amino acids as novel agents for the oral delivery of heparin sodium. J. Control. Release 50, 41–49 (1998).
    • 54 Brayden D, Creed E, O'Connell A, Leipold H, Agarwal R, Leone-Bay A. Heparin absorption across the intestine: effects of sodium N-[8-(2-hydroxybenzoy)amino] caprylate in rat in situ intestinal installations and in caco-2 monolayers. Pharm. Res. 14, 1772–1779 (1997).
    • 55 Hull R, Kakkar AK, Marder VJ, Baughman R, Leone-Bay A, Goldberg M. Oral SNAC-heparin vs, enoxaparin for preventing venous-thromboembolism following total hip replacement. Blood 100, 148 (2001).
    • 56 Pineo G, Hull R, Marder V. Oral delivery of heparin: SNAC and related formulations. Best Pract. Res. Clin. Haematol. 17, 153–160 (2004).
    • 57 Arbit E, Goldberg M, Gomez-Orellana I, Majuru S. Oral heparin: status review. Thromb. J. 4, 1–7 (2006).
    • 58 Baughman RA, Kapoor SC, Agarwal RK et al. Oral delivery of anticoagulant doses of heparin: a randomized, double-blind, controlled study in humans. Circulation 98, 1610–1615 (1998).
    • 59 Berkowitz SD, Marder VJ, Kosutic G, Baughman RA. Oral heparin administered with a novel drug delivery agent (SNAC) in healthy volunteers and patients undergoing elective total hip arthroplasty. J. Thromb. Haemost. 1, 1914–1919 (2003).
    • 60 Leone-Bay A, O'Shaughnessy C, Agarwal R, Rivera-Schaub T, Rosado-Gray C, Gerspach L. Oral low molecular weight absorption from solution and solid dosage form in rat, dog and monkey models. Pharm. Technol. 38–46 (2002).
    • 61 Thanou M, Verhoef JC, Junginger HE. Oral drug absorption enhancement by chitosan and its derivatives. Adv. Drug Deliv. Rev. 52, 117–126 (2001a).
    • 62 Thanou C, Verhoef J, Nihot M, Verheidjen J, Jungiger H. Enhancement of the intestinal absorption of low molecular weight heparin in rats and pigs using carbopol 934P. Pharm. Res. 18, 1638–1641 (2001b).
    • 63 Kast CE, Guggi D, Langoth N, Bernkop-Schnürch A. Development and in vivo evaluation of an oral delivery system for low molecular weight heparin based on thiolated polycarbophil. Pharm. Res. 20, 931–936 (2003).
    • 64 Clausen AE, Kast CE, Bernkop-Schnürch A. The role of glutathione in the permeation enhancing effect of thiolated polymers. Pharm. Res. 19, 602–608 (2002).
    • 65 Hejazi R, Amiji M. Chitosan-based gastrointestinal delivery systems. J. Control. Release 89, 151–165 (2003).
    • 66 Chen MC, Wong HS, Lin KJ, Chen HL, Wey SP, Sonaje K et al. The characteristics, biodistribution and bioavailability of a chitosan-based nanoparticulate system for the oral delivery of heparin. Biomaterials 30, 6629–6637 (2009).
    • 67 Thanou M, Nihot MT, Jansen M, Verhoef JC, Junginger HE. Mono-N-carboxymethyl chitosan (MCC), a polyampholytic chitosan derivative, enhances the intestinal absorption of low molecular weight heparin across intestinal epithelia in vitro and in vivo. J. Pharm. Sci. 90, 38–46 (2001c).
    • 68 Thanou M, Henderson S, Kydonieus A, Elson C. N-sulfonato-N, O-carboxymethylchitosan: a novel polymeric absorption enhancer for the oral delivery of macromolecules. J. Control. Release 117, 171–178 (2007).
    • 69 Grabovac V, Schmitz T, Föger F, Berknop-Schnürch A. Papain: an effective permeation enhancer for orally administered low molecular weight heparin. Pharm. Res. 24, 1001–1006 (2007).
    • 70 Bock U, Kolac C, Borchard G et al. Transport of proteolytic enzymes across caco-2 cell monolayers. Pharm. Res. 15, 1393–1400 (1998).
    • 71 Jiao Y, Ubrich N, Hoffart V et al. Anticoagulant activity of heparin following oral administration of heparin-loaded microparticles in rabbits. J. Pharm. Sci. 91, 760–768 (2002a).
    • 72 Jiao Y, Ubrich N, Hoffart V et al. Preparation and characterization of heparin-loaded polymeric microparticles. Drug Dev. Ind. Pharm. 28, 1033–1042 (2002b).
    • 73 Jiao Y, Ubrich N, Marchand-Arvier M et al. In vitro and in vivo evaluation of oral heparin–loaded polymeric nanoparticles in rabbits. Circulation 105, 230–235 (2002c).
    • 74 Hoffart V, Ubrich N, Lamprecht A et al. Microencapsulation of low molecular weight heparin into polymeric particles designed with biodegradable and nonbiodegradable polycationic polymers. Drug Del. 10, 1–7 (2003).
    • 75 Hoffart V, Lamprecht A, Maincent P, Lecompte T, Vigneron C, Ubrich N. Oral bioavailability of a low molecular weight heparin using a polymeric delivery system. J. Control. Release 113, 38–42 (2006).
    • 76 Sun W, Mao S, Wang Y et al. Bioadhesion and oral absorption of enoxaparin nanocomplexes. Int. J. Pharm. 386, 275–281 (2010).
    • 77 Paliwal R, Paliwal SR, Agrawal GP, Vyas SP. Chitosan nanoconstructs for improved oral delivery of low molecular weight heparin: in vitro and in vivo evaluation. Int. J. Pharm. 422, 179–184 (2012b).
    • 78 Hayes PY, Ross BP, Thomas BG, Toth I. Polycationic lipophilic-core dendrons as penetration enhancers for the oral administration of low molecular weight heparin. Bioorg. Med. Chem. 14, 143–152 (2006).
    • 79 Lee DY, Lee J, Lee S, Kim SK, Byun Y. Lipophilic complexation of heparin based on bile acid for oral delivery. J. Control. Release 123, 39–45 (2007).
    • 80 Scala-Bertola J, Rabiskova M, Lecompte T, Bonneaux F, Maincent P. Granules in the improvement of oral heparin bioavailability. Int. J. Pharm. 374, 12–16 (2009).
    • 81 Leonard TW, Lynch J, McKenna MJ, Brayden DJ. Promoting absorption of drugs in humans using medium-chain fatty acid-based solid dosage forms: GIPET™. Exp. Op. Drug Deliv. 3, 685–692 (2006).
    • 82 Ito Y, Kusawake T, Rama Prasad YV, Sugioka N, Shibata N, Takada K. Preparation and evaluation of oral solid heparin using emulsifier and adsorbent for in vitro and in vivo studies. Int. J. Pharm. 317, 114–119 (2006).
    • 83 Prasad YV, Minamimoto T, Yoshikawa Y et al. In situ intestinal absorption studies on low molecular weight heparin in rats using Labrasol as absorption enhancer. Int. J. Pharm. 271, 225–232 (2004).
    • 84 Lee YK, Kim SH, Byun Y. Oral delivery of new heparin derivatives in rats. Pharm. Res. 17, 1259–1264 (2000).
    • 85 Lee YK, Nam JH, Shin HC, Byun Y. Conjugation of low molecular weight heparin and deoxycholic acid for the development of a new oral anticoagulant agent. Circulation 104, 3116–3120 (2001).
    • 86 Lee YK, Kim SK, Lee DY et al. Efficacy of orally active chemical conjugate of low molecular weight heparin and deoxycholic acids in rats, mice and monkeys. J. Control. Release 111, 290–298 (2006).
    • 87 Kim SK, Lee EH, Vaishali B, Lee S, Lee YK, Kim CY et al. Tricaprylin microemulsion for oral delivery of low molecular weight heparin conjugates. J. Control. Release 105, 32–42 (2005).
    • 88 Kim SK, Vaishali B, Lee E, Lee S, Lee YK, Kumar TS et al. Oral delivery of chemical conjugates of heparin and deoxycholic acid in aqueous formulation. Thromb. Res. 117, 419–427 (2006).
    • 89 Kim SK, Lee DY, Lee E et al. Absorption study of deoxycholic acid-heparin conjugate as a new form of oral-anticoagulant. J. Control Release 120, 4–10 (2007).
    • 90 Kim SK, Huh J, Kim SY, Byun Y, Lee DY, Moon HT. Physicochemical conjugation with deoxycholic acid and dimethylsulfoxide for heparin oral delivery. Bioconj. Chem. 22, 1451–1458 (2011).
    • 91 van Boeckel CAA, Petitou M. The unique antithrombin III binding domain of heparin: a lead to new synthetic antithrombotics. Angew. Chem. Int. Ed. Engl. 32, 1671–1818 (1993).
    • 92 Herbert JM, Petitou M, Lormeau JC, Cariou R, Necciari J, Magnani HN et al. SR 90107A/Org 31540, a novel anti-Factor Xa antithrombotic agent. Cardiov. Drugs Rev. 1, 1–26 (1997).
    • 93 Donat F, Duret JP, Santoni A, Cariou R, Necciari J, Magnani H et al. The pharmacokinetics of fondaparinux sodium in healthy volunteers. Clin. Pharmacokinet. 41, 1–9 (2002).
    • 94 Cariou R. Le pentasaccharide (fondaparinux sodium, Arixtra®): avantage à la synthèse. STV 16, 335–338 (2004).
    • 95 Vetter A, Perera G, Leithner K, Klima G, Berknop-Schnürch A. Development and in vivo bioavailability study of an oral fondaparinux delivery system. Eur. J. Pharm. Sci 41, 489–497 (2010).
    • 96 Leonard TW, Coughlan DC, Cullen A. Pharmaceutical compositions of selective Factor Xa inhibitors for oral administration. WO 2011/120033 A1 (2011).
    • 97 Meissonnier J, Sicre N, Sabate G, Dubreucq G, Nancy-Portebois V, Petitou M. Pharmaceutical oral dosage form containing a synthetic oligosaccharide. WO 2011/073408 A2 (2011).
    • 98 Ralay-Ranaivo B, Desmaële D, Bianchini EP, Lepeltier E, Bourgaux C, Borgel D et al. Novel self assembling nanoparticles for the oral administration of fondaparinux: synthesis, characterization and in vivo evaluation. J. Control Release 194, 323–331 (2014).• Self-assembling nanoparticles made using bioconjugates of fondaparinux.