Skip to main content
Log in

UVC induced oxidation of chloropurines: excited singlet and triplet pathways for the photoreaction

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The phototransformation of 2-chloro, 6-chloro and 2,6-dichloropurines under UVC excitation (254 nm) has been studied and the major photoproducts have been identified using absorption spectroscopy, HPLC and mass spectrometry. It was shown that hydroxypurines were formed as the main products for all three investigated compounds both in the presence and absence of oxygen. In the case of 6-chloro- and 2,6-dichloropurine, a photodimer is also formed as a minor photoproduct in the absence of oxygen but is efficiently quenched in the presence of oxygen. Nanosecond photolysis experiments also revealed significant intersystem crossing to the triplet state of the chloropurines which has been characterized (transient absorption spectra, triplet formation quantum yields and rate constants of quenching by oxygen, Mn2+ ions and ground state). Experimental evidence allows to conclude that the triplet state is involved in photodimer formation whereas the hydroxypurine is formed from the reaction of the excited singlet state of chloropurines with the solvent (water addition) through heterolytic C-Cl bond rupture.Mass spectrometry and 1H NMR results allowed to propose a chemical pathway for dimer formation in the case of 2,6-dichloropurine in a two-step process: first a homolytic rupture of C-Cl bond in the triplet state of the molecule with the formation of purinyl radicals, which subsequently react with an excess of ground state molecules and/or hydroxypurine primarily formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Frenkel, Carcinogen-mediated oxidant formation and oxidative DNA damage, Pharmacol. Ther., 1992, 53, 127–166.

    Article  CAS  PubMed  Google Scholar 

  2. H. R. Griffiths, P. Mistry, K. E. Herbert, J. Lunec, Molecular and cellular effects of ultraviolet light-induced genotoxicity, Crit. Rev. Clin. Lab. Sci., 1998, 35, 189–237.

    Article  CAS  PubMed  Google Scholar 

  3. J. Cadet, T. Douki, D. Gasparutto, J.-L. Ravanat, Oxidative damage to DNA: formation, measurement and biochemical features, Mutat. Res., 2003, 531, 5–23.

    Article  CAS  PubMed  Google Scholar 

  4. J. Cadet, R. Teoule, Comparative study of oxidation of nucleic accid components by hydroxyl radicals, singlet oxygen and superoxide anion radicals, Photochem. Photobiol., 1978, 28, 661–667.

    Article  CAS  PubMed  Google Scholar 

  5. X. Zhang, B. S. Rosenstein, Y. Wang, M. Lebwohl, H. Wei, Identification of possible reactive oxygen species involved in ultraviolet radiation-induced oxidative DNA damage, Free Radical Biol. Med., 1997, 23, 980–985.

    Article  CAS  Google Scholar 

  6. A.-G. Bourdat, T. Douki, S. Frelon, D. Gasparutto, J. Cadet, Tandem base lesions are generated by hydroxyl radical within isolated DNA in aerated aqueous solution, J. Am. Chem. Soc., 2000, 122, 4549–4556.

    Article  CAS  Google Scholar 

  7. J. Cadet, T. Delatour, T. Douki, D. Gasparutto, J.-P. Pouget, J.-L. Ravanat, S. Sauvagio, Hydroxyl radicals and DNA base damage, Mutat. Res., 1999, 424, 9–21.

    Article  CAS  PubMed  Google Scholar 

  8. J.-L. Ravanat, T. Douki, J. Cadet, Direct and indirect effects of UV radiation on DNA and its components, J. Photochem. Photobiol., B, 2001, 63, 88–102.

    Article  CAS  Google Scholar 

  9. F. Bergmann, H. Kwietny, G. Levin, D. J. Brown, The action of mammalian xanthine oxidase on N-methylated purines, J. Am. Chem. Soc., 1960, 82, 598–605.

    Article  CAS  Google Scholar 

  10. K. Banach, E. Bojarska, Z. Kazimierczuk, L. Magnowska, A. Bzowska, Kinetic model of oxidation catalyzed by xanthine oxidase-the final enzyme in degradation of purine nucleosides and nucleotides, Nucleosides, Nucleotides Nucleic Acids, 2005, 24, 465–469.

    Article  CAS  PubMed  Google Scholar 

  11. F. Bergmann, H. Ungar, A. Kalmus, The enzymatic oxidation of 2-chloropurine, Biochim. Biophys. Acta, 1960, 45, 49–56.

    Article  CAS  Google Scholar 

  12. H. Ishihara, S. Y. Wang, Photochemistry of 5-bromouracils-isolation of 5,5’-diuracils, Nature, 1966, 210, 1222.

    Article  CAS  PubMed  Google Scholar 

  13. Z. Kazimierczuk, D. Shugar, Photochemical transformation of 6-chlorouracil and some alkylated analogues, Biochim. Biophys. Acta, 1971, 254, 157.

    Article  CAS  PubMed  Google Scholar 

  14. Z. Kazimierczuk, R. Mertens, W. Kawczynski, F. Seela, Synthesis of 8-aza-1,3-dideaza-2’-deoxyadenosine and 5,6-disubsittuted benzotriazole 2’-deoxy-beta-d-ribofuranosides via nucleobase-anion glycosylation, Helv. Chim. Acta, 1991, 74, 316–325.

    Article  Google Scholar 

  15. B. Czochralska, L. Lindqvist, Reaction mechanism in the photochemistry of the antileukaemic agents 2-chloro- and 2-bromo-2’-deoxyadenosine, studied by nanosecond laser flash photolysis, J. Photochem. Photobiol., B, 1999, 50, 28–32.

    Article  CAS  Google Scholar 

  16. B. Czochralska, E. Bojarska, M.-P. Fontaine-Aupart, F. Tfibel and L. Lindqvist, Photolysis of 2-chloro-8-bromo-2’-deoxyadenosine (antileukemic drug) and 8-bromoadenosine studied by UVC nanosecond laser flash, in Proceedings of the 8th congress of the European Society for Photobiology, Grenade, 1999, p. 153.

    Google Scholar 

  17. L. Lindqvist, B. Czochralska, M.-P. Fontaine-Aupart, W. Kawczynski, F. Tfibel, T. Douki, Photochemistry of 2-chloropyrimidine, Photochem. Photobiol. Sci., 2002, 1, 600–606.

    Article  CAS  PubMed  Google Scholar 

  18. J. A. Montgomery, Synthesis of potential anticancer agents. 1. chloropurines, J. Am. Chem. Soc., 1956, 78, 1928–1930.

    Article  CAS  Google Scholar 

  19. H. Ballweg, N-puryl-(6)-derivate von diaminen, Justus Liebigs Ann. Chem., 1961, 649, 124–130.

    Article  Google Scholar 

  20. S. F. Mason, Purine studies. 2. The ultra-violet absorption spectra of some mono-substituted and poly-substituted purines, J. Chem. Soc., 1954, 2071–2081.

    Google Scholar 

  21. C. Parkanyi, D. Bouin, Dah-Ch. Shien, S. Tunbrant, J.-J. Aaron, A. Tine, The effect of pH on the electronic absorption, fluorescence and phosphorescence spectra of purines and pyrimidines- determination of the lowest excited singlet and triplet ionization constants, J. Chim. Phys., 1984, 81, 21–31.

    Article  CAS  Google Scholar 

  22. C. El Hanine-Lmoumene, L. Lindqvist, Stepwise two-photon excitation of 1,5-dihydroflavin mononucleotide: Study of flavosemiquinone properties, Photochem. Photobiol., 1997, 66, 591–595.

    Article  Google Scholar 

  23. R. Bensasson, E. J. Land, Triplet-triplet extinction coefficients via energy transfer, Trans. Faraday Soc., 1971, 67, 1904–1915.

    Article  CAS  Google Scholar 

  24. E. Quinones, R. Arce, Photochemistry and photophysics of purine free base and 6-methylpurine, J. Am. Chem. Soc., 1989, 111, 8218–8223.

    Article  CAS  Google Scholar 

  25. I. G. Gut, P. D. Wood, R. W. Redmond, Interaction of triplet photosensitizers with nucleotides and DNA in aqueous solution at room temperature, J. Am. Chem. Soc., 1996, 118, 2366–2373.

    Article  CAS  Google Scholar 

  26. D. H. Murgida, G. M. Bilmes, R. Erra-Ballsels, A photophysical study of purines and theophylline by using laser-induced optoacoustic spectroscopy, Photochem. Photobiol., 1996, 64, 777–784.

    Article  CAS  PubMed  Google Scholar 

  27. B. Cohen, P. M. Hare, B. Kohler, Ultrafast excited-state dynamics of adenine and monomethylated adenines in solution: Implications for the nonradiative decay mechanism, J. Am. Chem. Soc., 2003, 152, 13594–13601.

    Article  CAS  Google Scholar 

  28. D. V. Bent, E. Hayon, P. N. Moorthy, Chemistry of triplet state of diazines in solution studied by laser spectroscopy, J. Am. Chem. Soc., 1975, 97, 5065–5071.

    Article  CAS  Google Scholar 

  29. S. M. Bishop, M. Malone, D. Philips, A. W. Parkerand, M. C. R. Symons, Singlet oxygen sensitization by excited state DNA, J. Chem. Soc., Chem. Commun., 1994, 871–872.

    Google Scholar 

  30. J. Cadet, J. L. Ravanat, G. R. Martinez, M. H. G. Medeiros, P. Di Mascio, Singlet oxygen oxidation of isolated and cellular DNA: product formation and mechanistic insights, Photochem. Photobiol., 2006, 82, 1219–1225.

    Article  CAS  PubMed  Google Scholar 

  31. I. Rosenthal, J. N. Pitts Jr., Reactivity of purine and pyrimidine bases toward singlet oxygen, Biophys. J., 1971, 11, 963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. T. Mohammad, H. Morrison, Evidence for the photosensitized formation of singlet oxygen by UVB irradiation of 2’-deoxyguanosine 5’-monophosphate, J. Am. Chem. Soc., 1996, 118, 1221–1222.

    Article  CAS  Google Scholar 

  33. V. Nair, D. A. Young, Synthetic transformations of transient purinyl radicals-Formation of monoarylated and diarylated and heteroarylated nucleosides, J. Org. Chem., 1984, 49, 4340–4344.

    Article  CAS  Google Scholar 

  34. Z. B. Alfassi, G. I. Khaikin, P. Neta, Formation and reactivity of pyridylperoxyl radicals in solution, J. Phys. Chem., 1995, 99, 4544–4548.

    Article  CAS  Google Scholar 

  35. F. Seela, N. Ramzaeva and H. Rosemeyer, Purines, in Methods of organic synthesis, ed. Houben-Weyl, Georg Thieme, Stuttgart, New York, 1998, vol. E9b, pp. 304–550.

    Google Scholar 

  36. J. Cadet and P. Vigny, The photochemistry of nucleic acids, in Bioorganic Photochemistry, ed. H. Morrison, Wiley Interscience, New York, 1990, vol. 1, pp. 1–272.

    CAS  Google Scholar 

  37. R. O. Rahn and M. H. Patrick, Photochemistry of DNA secondary structure photo sensitization base substitution and exogenous molecules, in Photochemistry and Photobiology in Nucleic Acids, ed. S. Y. Wang, Academic Press, New York, 1976, vol. II, pp. 97–145.

    Article  Google Scholar 

  38. J. Cadet, L. Voituriez, F. E. Hruska, L. S. Kan, F. A. A. M. de Leeuw, C. Altona, Characterization of thymidine ultraviolet photoproducts-cyclobutane dimers and 5,6-dihydrothymidines, Can. J. Chem., 1985, 63, 2861–2868.

    Article  CAS  Google Scholar 

  39. S. Kumar, N. D. Sharma, R. I. H. Davies, D. W. Phillipson, J. A. Mc Closky, The isolation and characterization of a new type of dimeric adenine photoproduct in UV-irradiated deoxyadenylates, Nucleic Acids Res., 1987, 15, 1199–1216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. J. L. Kelley, J. A. Linn, J., W. Selway, Antirhinovirus activity of 6-anilino-9-benzyl-2-chloro-9 h-purines, J. Med. Chem., 1990, 33, 1360–1363.

    Article  CAS  PubMed  Google Scholar 

  41. L. Chen, N. Kode, D. Murthy, S. Phadtare, N9- and N7-(chloromethyl phenymethyl)chloropurine derivatives from alpha, alpha’-dichloroxylenes: Synthesis and anticancer activity, Med. Chem. Res., 2005, 14, 445–474.

    Article  CAS  Google Scholar 

  42. C. Parkanyi, H. L. Yuan, M. K. M. Tsai, Potential DNA bis-intercalating agents-bridged bis-(6-chloropurines) and related-compounds, J. Heterocycl. Chem., 1991, 28, 465–467.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Pierre Fontaine-Aupart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bojarska, E., Kazimierczuk, Z., Mouchard, C. et al. UVC induced oxidation of chloropurines: excited singlet and triplet pathways for the photoreaction. Photochem Photobiol Sci 7, 1054–1062 (2008). https://doi.org/10.1039/b805149f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b805149f

Navigation