Skip to main content

Carbohydrates

  • Chapter
  • First Online:

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 364))

Abstract

Although carbohydrates represent one of the most important families of biomolecules, they remain under-studied in comparison to the other biomolecular families (peptides, nucleobases). Beyond their best-known function of energy source in living systems, they act as mediator of molecular recognition processes, carrying molecular information in the so-called “sugar code,” just to name one of their countless functions. Owing to their high conformational flexibility, they encode extremely rich information conveyed via the non-covalent hydrogen bonds within the carbohydrate and with other biomolecular assemblies, such as peptide subunits of proteins. Over the last decade there has been tremendous progress in the study of the conformational preferences of neutral oligosaccharides, and of the interactions between carbohydrates and various molecular partners (water, aromatic models, and peptide models), using vibrational spectroscopy as a sensitive probe. In parallel, other spectroscopic techniques have recently become available to the study of carbohydrates in the gas phase (microwave spectroscopy, IRMPD on charged species).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Varki A (1993) Glycobiology 3(2):97–130

    CAS  Google Scholar 

  2. Berg JM, Tymoczko JL, Stryer L (2002) Carbohydrates. In: Biochemistry, 5th edn. W.H. Freeman, New York

    Google Scholar 

  3. Taylor ME, Drickamer K (2003) Introduction to glycobiology, 2nd edn. Oxford University Press, London, New York

    Google Scholar 

  4. Rudd PM, Dwek RA (2006) Curr Opin Struct Biol 16(5):559–560

    CAS  Google Scholar 

  5. Imperiali B (2012) J Am Chem Soc 134(43):17835–17839

    CAS  Google Scholar 

  6. A Roadmap for the Future (2012) National Research Council (US) committee on assessing the importance and impact of glycomics and glycosciences. National Academies Press, Washington. ISBN-13: 978-0-309-26083-1-ISBN-10: 0-309-26083-3

    Google Scholar 

  7. Simons JP, Jockusch RA, Carcabal P, Hung I, Kroemer RT, Macleod NA, Snoek LC (2005) Int Rev Phys Chem 24(3–4):489–531

    CAS  Google Scholar 

  8. Simons JP (2009) Mol Phys 107(23–24):2435–2458

    CAS  Google Scholar 

  9. Schwarz F, Aebi M (2011) Curr Opin Struct Biol 21(5):576–582

    CAS  Google Scholar 

  10. Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA (2007) Annu Rev Immunol 25:21–50

    CAS  Google Scholar 

  11. Wormald MR, Dwek RA (1999) Structure 7(7):R155–R160

    CAS  Google Scholar 

  12. Wormald MR, Petrescu AJ, Pao YL, Glithero A, Elliott T, Dwek RA (2002) Chem Rev 102(2):371–386

    CAS  Google Scholar 

  13. O’Connor SE, Imperiali B (1996) Chem Biol 3(10):803–812

    Google Scholar 

  14. O’Connor SE, Imperiali B (1998) Chem Biol 5(8):427–437

    Google Scholar 

  15. Weerapana E, Imperiali B (2006) Glycobiology 16(6):91r–101r

    CAS  Google Scholar 

  16. Woods RJ, Pathiaseril A, Wormald MR, Edge CJ, Dwek RA (1998) Eur J Biochem 258(2):372–386

    CAS  Google Scholar 

  17. Bosques CJ, Tschampel SM, Woods RJ, Imperiali B (2004) J Am Chem Soc 126(27):8421–8425

    CAS  Google Scholar 

  18. Gabius HJ (2000) Naturwissenschaften 87(3):108–121

    CAS  Google Scholar 

  19. Gabius H-J, André S, Kaltner H, Siebert H-C (2002) Biochim Biophys Acta Gen Subj 1572(2–3):165–177

    CAS  Google Scholar 

  20. Gabius H-J, André S, Jiménez-Barbero J, Romero A, Solís D (2011) Trends Biochem Sci 36(6):298–313

    CAS  Google Scholar 

  21. Pilobello KT, Mahal LK (2007) Curr Opin Chem Biol 11(3):300–305

    CAS  Google Scholar 

  22. Feizi T, Chai W (2004) Nat Rev Mol Cell Biol 5(7):582–588

    CAS  Google Scholar 

  23. Davis BG (2000) Chem Ind, pp. 134–138

    Google Scholar 

  24. Shriver Z, Raguram S, Sasisekharan R (2004) Nat Rev Drug Discov 3(10):863–873

    CAS  Google Scholar 

  25. Ernst B, Magnani JL (2009) Nat Rev Drug Discov 8(8):661–677

    CAS  Google Scholar 

  26. Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds) (2009) Essential in glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  27. Weis WI, Drickamer K (1996) Annu Rev Biochem 65(1):441–473

    CAS  Google Scholar 

  28. Bertozzi CR, Rabuka D (2009) Structural basis of glycan diversity. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  29. Breslow R (2012) J Am Chem Soc 134(16):6887–6892

    CAS  Google Scholar 

  30. Ruiz-Mirazo K, Briones C, de la Escosura A (2014) Chem Rev 114(1):285–366

    Google Scholar 

  31. Cocinero EJ, Lesarri A, Ecija P, Basterretxea FJ, Grabow J-U, Fernandez JA, Castano F (2012) Angew Chem Int Ed 51(13):3119–3124

    CAS  Google Scholar 

  32. Talbot FO, Simons JP (2002) Phys Chem Chem Phys 4(15):3562–3565

    CAS  Google Scholar 

  33. Jockusch RA, Kroemer RT, Talbot FO, Simons JP (2003) J Phys Chem A 107(49):10725–10732

    CAS  Google Scholar 

  34. Jockusch RA, Kroemer RT, Talbot FO, Snoek LC, Carcabal P, Simons JP, Havenith M, Bakker JM, Compagnon I, Meijer G, von Helden G (2004) J Am Chem Soc 126(18):5709–5714

    CAS  Google Scholar 

  35. Carcabal P, Jockusch RA, Hunig I, Snoek LC, Kroemer RT, Davis BG, Gamblin DP, Compagnon I, Oomens J, Simons JP (2005) J Am Chem Soc 127(32):11414–11425

    CAS  Google Scholar 

  36. Carcabal P, Hunig I, Gamblin DP, Liu B, Jockusch RA, Kroemer RT, Snoek LC, Fairbanks AJ, Davis BG, Simons JP (2006) J Am Chem Soc 128(6):1976–1981

    CAS  Google Scholar 

  37. Jockusch RA, Talbot FO, Rogers PS, Simone MI, Fleet GWJ, Simons JP (2006) J Am Chem Soc 128(51):16771–16777

    CAS  Google Scholar 

  38. Macleod NA, Johannessen C, Hecht L, Barron LD, Simons JP (2006) Int J Mass Spectrom 253(3):193–200

    CAS  Google Scholar 

  39. Screen J, Stanca-Kaposta EC, Gamblin DP, Liu B, Macleod NA, Snoek LC, Davis BG, Simons JP (2007) Angew Chem Int Ed 46(20):3644–3648

    CAS  Google Scholar 

  40. Cocinero EJ, Stanca-Kaposta EC, Scanlan EM, Gamblin DP, Davis BG, Simons JP (2008) Chem Eur J 14(29):8947–8955

    CAS  Google Scholar 

  41. Simons JP, Stanca-Kaposta EC, Cocinero EJ, Liu B, Davis BG, Gamblin DP, Kroemer RT (2008) Phys Scr 78(5), 058124

    Google Scholar 

  42. Cocinero EJ, Gamblin DP, Davis BG, Simons JP (2009) J Am Chem Soc 131(31):11117–11123

    CAS  Google Scholar 

  43. Simons JP, Davis BG, Cocinero EJ, Gamblin DP, Stanca-Kaposta EC (2009) Tetrahedron-Asymmetry 20(6–8):718–722

    CAS  Google Scholar 

  44. Su Z, Cocinero EJ, Stanca-Kaposta EC, Davis BG, Simons JP (2009) Chem Phys Lett 471(1–3):17–21

    CAS  Google Scholar 

  45. Drouin L, Stanca-Kaposta EC, Saundh P, Fairbanks AJ, Kemper S, Claridge TDW, Simons JP (2009) Chem Eur J 15(16):4057–4069

    CAS  Google Scholar 

  46. Su Z, Wagner B, Cocinero EJ, Ernst B, Simons JP (2009) Chem Phys Lett 477(4–6):365–368

    CAS  Google Scholar 

  47. Brauer B, Pincu M, Buch V, Bar I, Simons JP, Gerber RB (2011) J Phys Chem A 115(23):5859–5872

    CAS  Google Scholar 

  48. Cocinero EJ, Carcabal P, Vaden TD, Davis BG, Simons JP (2011) J Am Chem Soc 133(12):4548–4557

    CAS  Google Scholar 

  49. Cocinero EJ, Carcabal P, Vaden TD, Simons JP, Davis BG (2011) Nature 469(7328):76–U1400

    CAS  Google Scholar 

  50. Jin L, Simons JP, Gerber RB (2011) Chem Phys Lett 518:49–54

    CAS  Google Scholar 

  51. Mayorkas N, Rudic S, Cocinero EJ, Davis BG, Simons JP (2011) Phys Chem Chem Phys 13(41):18671–18678

    CAS  Google Scholar 

  52. Mayorkas N, Rudic S, Davis BG, Simons JP (2011) Chem Sci 2(6):1128–1134

    CAS  Google Scholar 

  53. Pincu M, Cocinero EJ, Mayorkas N, Brauer B, Davis BG, Gerber RB, Simons JP (2011) J Phys Chem A 115(34):9498–9509

    CAS  Google Scholar 

  54. Jin L, Simons JP, Gerber RB (2012) J Phys Chem A 116(46):11088–11094

    CAS  Google Scholar 

  55. Sagar R, Rudic S, Gamblin DP, Scanlan EM, Vaden TD, Odell B, Claridge TDW, Simons JP, Davis BG (2012) Chem Sci 3(7):2307–2313

    CAS  Google Scholar 

  56. H-b X, Jin L, Rudic S, Simons JP, Gerber RB (2012) J Phys Chem B 116(16):4851–4859

    Google Scholar 

  57. Barry CS, Cocinero EJ, Carcabal P, Gamblin DP, Stanca-Kaposta EC, Remmert SM, Fernández Alonso MdC, Rudic S, Simons JP, Davis BG (2013) J Am Chem Soc 135(45):16895–16903

    Google Scholar 

  58. Carcabal P, Cocinero EJ, Simons JP (2013) Chem Sci 4(4):1830–1836

    CAS  Google Scholar 

  59. Stanca-Kaposta EC, Carcabal P, Cocinero EJ, Hurtado P, Simons JP (2013) J Phys Chem B 117(27):8135–8142

    CAS  Google Scholar 

  60. Polfer NC, Valle JJ, Moore DT, Oomens J, Eyler JR, Bendiak B (2006) Anal Chem 78(3):670–679

    CAS  Google Scholar 

  61. Stefan SE, Eyler JR (2009) Anal Chem 81(3):1224–1227

    CAS  Google Scholar 

  62. Cagmat EB, Szczepanski J, Pearson WL, Powell DH, Eyler JR, Polfer NC (2010) Phys Chem Chem Phys 12(14):3474–3479

    CAS  Google Scholar 

  63. Stefan SE, Eyler JR (2010) Int J Mass Spectrom 297(1–3):96–101

    CAS  Google Scholar 

  64. Brown DJ, Stefan SE, Berden G, Steill JD, Oomens J, Eyler JR, Bendiak B (2011) Carbohydr Res 346(15):2469–2481

    CAS  Google Scholar 

  65. Stefan SE, Ehsan M, Pearson WL, Aksenov A, Boginski V, Bendiak B, Eyler JR (2011) Anal Chem 83(22):8468–8476

    CAS  Google Scholar 

  66. Contreras CS, Polfer NC, Oomens J, Steill JD, Bendiak B, Eyler JR (2012) Int J Mass Spectrom 330:285–294

    Google Scholar 

  67. Rudic S, Xie H-b, Gerber RB, Simons JP (2012) Mol Phys 110(15–16):1609–1615

    CAS  Google Scholar 

  68. Pena I, Mata S, Martin A, Cabezas C, Daly AM, Alonso JL (2013) Phys Chem Chem Phys 15(41):18243–18248

    CAS  Google Scholar 

  69. Cocinero EJ, Lesarri A, Ecija P, Cimas A, Davis BG, Basterretxea FJ, Fernandez JA, Castano F (2013) J Am Chem Soc 135(7):2845–2852

    CAS  Google Scholar 

  70. Bermudez C, Pena I, Cabezas C, Daly AM, Alonso JL (2013) Chemphyschem 14(5):893–895

    CAS  Google Scholar 

  71. Peña I, Cocinero EJ, Cabezas C, Lesarri A, Mata S, Écija P, Daly AM, Cimas Á, Bermúdez C, Basterretxea FJ, Blanco S, Fernández JA, López JC, Castaño F, Alonso JL (2013) Angew Chem Int Ed:n/a–n/a 52(45):11840–11845

    Google Scholar 

  72. Motiyenko RA, Alekseev EA, Dyubko SF, Lovas FJ (2006) J Mol Spectrosc 240(1):93–101

    CAS  Google Scholar 

  73. Foley BL, Tessier MB, Woods RJ (2012) Wiley Interdiscip Rev: Comput Mol Sci 2(4):652–697

    CAS  Google Scholar 

  74. Hansen HS, Hünenberger PH (2011) J Comput Chem 32(6):998–1032

    CAS  Google Scholar 

  75. Kirschner KN, Yongye AB, Tschampel SM, González-Outeiriño J, Daniels CR, Foley BL, Woods RJ (2008) J Comput Chem 29(4):622–655

    CAS  Google Scholar 

  76. Mackerell AD (2004) J Comput Chem 25(13):1584–1604

    CAS  Google Scholar 

  77. Damm W, Frontera A, Tirado–Rives J, Jorgensen WL (1997) J Comput Chem 18(16):1955–1970

    CAS  Google Scholar 

  78. Reiling S, Schlenkrich M, Brickmann J (1996) J Comput Chem 17(4):450–468

    CAS  Google Scholar 

  79. Woods RJ, Dwek RA, Edge CJ, Fraserreid B (1995) J Phys Chem 99(11):3832–3846

    CAS  Google Scholar 

  80. Sameera WMC, Pantazis DA (2012) J Chem Theory Comput 8(8):2630–2645

    CAS  Google Scholar 

  81. Halgren TA (1999) J Comput Chem 20(7):730–748

    CAS  Google Scholar 

  82. Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) J Phys Chem B 105(28):6474–6487

    CAS  Google Scholar 

  83. Kratzcr A (1920) Z Phys 3:460

    Google Scholar 

  84. Loomis FW (1920) Astrophys J 62:248

    Google Scholar 

  85. Edward JT (1955) Chem Ind 1102–1104

    Google Scholar 

  86. Wang C, Ying F, Wu W, Mo Y (2011) J Am Chem Soc 133(34):13731–13736

    CAS  Google Scholar 

  87. Mo Y (2010) Nat Chem 2(8):666–671

    CAS  Google Scholar 

  88. Asensio JL, Jimenez-Barbero J (1995) Biopolymers 35(1):55–73

    CAS  Google Scholar 

  89. Cheetham NWH, Dasgupta P, Ball GE (2003) Carbohydr Res 338(9):955–962

    CAS  Google Scholar 

  90. Larsson EA, Staaf M, Söderman P, Höög C, Widmalm G (2004) J Phys Chem A 108(18):3932–3937

    CAS  Google Scholar 

  91. Martín-Pastor M, Canales A, Corzana F, Asensio JL, Jiménez-Barbero J (2005) J Am Chem Soc 127(10):3589–3595

    Google Scholar 

  92. Olsson U, Serianni AS, Stenutz R (2008) J Phys Chem B 112(14):4447–4453

    CAS  Google Scholar 

  93. Pincu M, Gerber RB (2012) Chem Phys Lett 531:52–58

    CAS  Google Scholar 

  94. Zierke M, Smieško M, Rabbani S, Aeschbacher T, Cutting B, Allain FHT, Schubert M, Ernst B (2013) J Am Chem Soc 135(36):13464–13472

    CAS  Google Scholar 

  95. Mons M, Dimicoli I, Piuzzi F (2002) Int Rev Phys Chem 21(1):101–135

    CAS  Google Scholar 

  96. Mons M, Piuzzi F, Dimicoli I, Zehnacker A, Lahmani F (2000) Phys Chem Chem Phys 2(22):5065–5070

    CAS  Google Scholar 

  97. Cabezas C, Pena I, Daly AM, Alonso JL (2013) Chem Commun 49(92):10826–10828

    CAS  Google Scholar 

  98. Alonso JL, Lozoya MA, Pena I, Lopez JC, Cabezas C, Mata S, Blanco S (2014) Chem Sci 5(2):515–522

    CAS  Google Scholar 

  99. Brown GG, Dian BC, Douglass KO, Geyer SM, Shipman ST, Pate BH (2008) Rev Sci Instrum 79(5), 053103

    Google Scholar 

  100. Zaleski DP, Neill JL, Muckle MT, Seifert NA, Carroll PB, Weaver SLW, Pate BH (2012) J Mol Spectrosc 280:68–76

    CAS  Google Scholar 

  101. Neill JL, Harris BJ, Steber AL, Douglass KO, Plusquellic DF, Pate BH (2013) Opt Express 21(17):19743–19749

    Google Scholar 

  102. Santana AG, Jiménez-Moreno E, Gómez AM, Corzana F, González C, Jiménez-Oses G, Jiménez-Barbero J, Asensio JL (2013) J Am Chem Soc 135(9):3347–3350

    CAS  Google Scholar 

  103. Haseley SR, Vermeer HJ, Kamerling JP, Vliegenthart JFG (2001) Proc Natl Acad Sci 98(16):9419–9424

    CAS  Google Scholar 

  104. Carvalho de Souza A, Ganchev D, Snel ME, Eerden JJM, Vliegenthart JG, Kamerling J (2009) Glycoconj J 26(4):457–465

    CAS  Google Scholar 

  105. Gerhards M, Unterberg C, Gerlach A, Jansen A (2004) Phys Chem Chem Phys 6(10):2682–2690

    CAS  Google Scholar 

  106. Fukui K, Takahashi K (2012) Anal Chem 84(5):2188–2194

    CAS  Google Scholar 

  107. Pagel K, Harvey DJ (2013) Anal Chem 85(10):5138–5145

    CAS  Google Scholar 

  108. Brown LJ, Creaser CS (2013) Curr Anal Chem 9(2):192–198

    CAS  Google Scholar 

  109. Bellina B, Compagnon I, MacAleese L, Chirot F, Lemoine J, Maitre P, Broyer M, Antoine R, Kulesza A, Mitric R, Bonacic-Koutecky V, Dugourd P (2012) Phys Chem Chem Phys 14(32):11433–11440

    CAS  Google Scholar 

  110. Hernandez O, Isenberg S, Steinmetz V, Glish G, Maitre P (2014) Submitted for publication

    Google Scholar 

  111. Schindler B, Joshi J, Allouche A-R, Simon D, Chambert S, Brites V, Gaigeot M-P, Compagnon I (2014) Phys Chem Chem Phys 16:22131–22138

    Google Scholar 

  112. Stearns JA, Seaiby C, Boyarkin OV, Rizzo TR (2009) Phys Chem Chem Phys 11(1):125–132

    CAS  Google Scholar 

  113. Shafizadeh N, Ha-Thi MH, Soep B, Gaveau MA, Piuzzi F, Pothier C (2011) J Chem Phys 135(11):114303

    CAS  Google Scholar 

Download references

Acknowledgements

Professor John P. Simons has pioneered the study of neutral CBHs in the gas phase. Several “generations” of students and post-docs have been lucky enough to spend some time in his group. We had the opportunity to contribute to very exciting studies and, most importantly, we found inspiration and confidence to pursue our own scientific interests. John has been especially important for the two of us for developing our own activities and we can never thank him enough for his support. We also want to thank all our friends from the “JPS sugar team” who contributed over the years. Francis Talbot, Rebeccah A. Jockush, Niel A. Macleod, Isabel Hunig, Cristina Stanca-Kaposta, Bo Liu, Timothy D. Vaden, Zheng Su, Nitzan Mayorkas, and Svemir Rudic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Çarçabal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cocinero, E.J., Çarçabal, P. (2014). Carbohydrates. In: Rijs, A., Oomens, J. (eds) Gas-Phase IR Spectroscopy and Structure of Biological Molecules. Topics in Current Chemistry, vol 364. Springer, Cham. https://doi.org/10.1007/128_2014_596

Download citation

Publish with us

Policies and ethics