Skip to main content
Log in

Calculation of core level shifts within DFT using pseudopotentials and localized basis sets

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The calculation of core level shifts can be done in the context of density functional theory (DFT) using different approaches and physical approximations to the photoemission process. The initial state and the ΔSCF approximations are the most commonly used ones. Here, we describe the details of their implementation in the context of DFT using pseudopotentials and localized atomic orbitals as a basis set, and in particular as applied to the Siesta code. We give a full account of the technicalities involved in these calculations, including the details of the ionic pseudopotential generation, basis sets, charge states and reference potential. We test the method by computing the core level shifts of the Si 2p level for a series of molecules and the p(2 × 2) asymmetric-dimer reconstruction of the Si(001) surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Siegbahn, Rev. Mod. Phys. 54, 709 (1982)

    Article  ADS  Google Scholar 

  2. W.F. Egelhoff, Surf. Sci. Rep. 6. 253 (1987)

    Article  ADS  Google Scholar 

  3. S. Hüfner, Photoelectron Spectroscopy, Principles and Applications (Springer-Verlag, Berlin, 2003)

  4. M. Weinert, R.E. Watson, Phys. Rev. B 51, 17168 (1995)

    Article  ADS  Google Scholar 

  5. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  6. P.H. Citrin, D.R. Hamann, Phys. Rev. B 10, 4948 (1974)

    Article  ADS  Google Scholar 

  7. N. Lang, A.R. Williams, Phys. Rev. B 16, 2408 (1977)

    Article  ADS  Google Scholar 

  8. A.R. Williams, N. Lang, Phys. Rev. Lett. 40, 945 (1978)

    Article  ADS  Google Scholar 

  9. Z.-H. Zeng, X.-F. Ma, W.-C. Ding, W.-X. Li, Sci. China Chem. 53, 402 (2010)

    Article  Google Scholar 

  10. M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, J.D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992)

    Article  ADS  Google Scholar 

  11. Y. Miyamoto, A. Oshiyama, Phys. Rev. B 44, 5931 (1991)

    Article  ADS  Google Scholar 

  12. X. Blase, A.J.R. da Silva, X. Zhu, S.G. Louie, Phys. Rev. B 50, 8102 (1994)

    Article  ADS  Google Scholar 

  13. E. Pehlke, M. Scheffler, Phys. Rev. Lett. 71, 2338 (1993)

    Article  ADS  Google Scholar 

  14. A. Pasquarello, M.S. Hybertsen, R. Car, Phys. Scr. T66, 118 (1996)

    Article  ADS  Google Scholar 

  15. A. Pasquarello, M.S. Hybertsen, R. Car, Phys. Rev. B 53, 10942 (1996)

    Article  ADS  Google Scholar 

  16. Z.-H. Zeng, J.L.F. Da Silva, H.-Q. Deng, W.-X. Li, Phys. Rev. B 79, 205413 (2009)

    Article  ADS  Google Scholar 

  17. M. Marsman, G. Kresse, J. Chem. Phys. 125, 104101 (2006)

    Article  ADS  Google Scholar 

  18. P. Ordejón, E. Artacho, J.M. Soler, Phys. Rev. B 53, R10441 (1996)

    Article  ADS  Google Scholar 

  19. D. Sánchez-Portal, P. Ordejón, E. Artacho, J.M. Soler, Int. J. Quant. Chem. 65, 453 (1997)

    Article  Google Scholar 

  20. J.M. Soler, E. Artacho, J. D Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002)

    Article  ADS  Google Scholar 

  21. J. Fraxedas, S. García-Gil, S. Monturet, N. Lorente, I. Fernández-Torrente, K.J. Franke, J.I. Pascual, A. Vollmer, R.-P. Blum, N. Koch, P. Ordejón, J. Phys. Chem. C 115, 18640 (2011)

    Google Scholar 

  22. P.S. Bagus, F. Illas, G. Pacchioni, F. Parmigiani, J. Electron Spectrosc. Related Phenom. 100, 215 (1999)

    Article  Google Scholar 

  23. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes (Cambridge University Press, 1992)

  24. B. Johansson, N. Mårtenson, Phys. Rev. B 21, 4427 (1980)

    Article  ADS  Google Scholar 

  25. G. Makov, M.C. Payne, Phys. Rev. B 51, 4014 (1995)

    Article  ADS  Google Scholar 

  26. E. Anglada, J.M. Soler, J. Junquera, E. Artacho, Phys. Rev. B 66, 205101 (2002)

    Article  ADS  Google Scholar 

  27. Abinit pseudopotentials are translated to Siesta format by means of a utility developed by J. Junquera, M. Verstraete, X. Gonze, A. García (to be published)

  28. K. Kuchitsu, Structure data of polyatomic molecules, Landolt-Börnstein – Numerical Data and Functional Relationships in Science and Technology, in New Series, Group II: Atomic and Molecular Physics (Springer-Verlag, Berlin, 1992), Vol. 21

  29. W.L. Jolly, K.D. Bomben, C.J. Eyermann, At. Data Nucl. Data Tables 31, 433 (1984)

    Article  ADS  Google Scholar 

  30. S. García-Gil, A. García, N. Lorente, P. Ordejón, Phys. Rev. B 79, 075441 (2009)

    Article  ADS  Google Scholar 

  31. D.J. Chadi, Phys. Rev. Lett. 43, 43 (1979)

    Article  ADS  Google Scholar 

  32. H. Koh, J.W. Kim, W.H. Choi, H.W. Yeom, Phys. Rev. B 67, 073306 (2003)

    Article  ADS  Google Scholar 

  33. P.E.J. Eriksson, R.I.G. Uhrberg, Phys. Rev. B 81, 125443 (2010)

    Article  ADS  Google Scholar 

  34. T. Miller, E. Rosenwinkel, T.-C. Chiang, Solid State Commun. 47, 935 (1983)

    Article  ADS  Google Scholar 

  35. O.V. Yazyev, A. Pasquarello, Phys. Rev. Lett. 96, 157601 (2006)

    Article  ADS  Google Scholar 

  36. R. Rurali, N. Lorente, P. Ordejón, Phys. Rev. 95, 209601 (2005)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ordejón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Gil, S., García, A. & Ordejón, P. Calculation of core level shifts within DFT using pseudopotentials and localized basis sets. Eur. Phys. J. B 85, 239 (2012). https://doi.org/10.1140/epjb/e2012-30334-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30334-5

Keywords

Navigation