Circular dichroism in molecular-frame photoelectron angular distributions in the dissociative photoionization of H2 and D2 molecules

J. F. Pérez-Torres, J. L. Sanz-Vicario, K. Veyrinas, P. Billaud, Y. J. Picard, C. Elkharrat, S. Marggi Poullain, N. Saquet, M. Lebech, J. C. Houver, F. Martín, and D. Dowek
Phys. Rev. A 90, 043417 – Published 28 October 2014

Abstract

The presence of net circular dichroism in the photoionization of nonchiral homonuclear molecules has been put in evidence recently through the measurement of molecular-frame photoelectron angular distributions in dissociative photoionization of H2 [Dowek et al., Phys. Rev. Lett. 104, 233003 (2010)]. In this work we present a detailed study of circular dichroism in the photoelectron angular distributions of H2 and D2 molecules, oriented perpendicularly to the propagation vector of the circularly polarized light, at different photon energies (20, 27, and 32.5 eV). Circular dichroism in the angular distributions at 20 and to a large extent 27 eV exhibits the usual pattern in which inversion symmetry is preserved. In contrast, at 32.5 eV, the inversion symmetry breaks down, which eventually leads to total circular dichroism after integration over the polar emission angle. Time-dependent ab initio calculations support and explain the observed results for H2 in terms of quantum interferences between direct photoionization and delayed autoionization from the Q1 and Q2 doubly excited states into ionic states (1sσg and 2pσu) of different inversion symmetry. Nevertheless, for D2 at 32.5 eV, there is a particular case where theory and experiment disagree in the magnitude of the symmetry breaking: when D+ ions are produced with an energy of around 5 eV. This reflects the subleties associated to such simple molecules when exposed to this fine scrutiny.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 25 July 2014

DOI:https://doi.org/10.1103/PhysRevA.90.043417

©2014 American Physical Society

Authors & Affiliations

J. F. Pérez-Torres1,*, J. L. Sanz-Vicario2,†, K. Veyrinas3, P. Billaud3,‡, Y. J. Picard3, C. Elkharrat3, S. Marggi Poullain3,§, N. Saquet3,∥, M. Lebech4, J. C. Houver3, F. Martín1,5, and D. Dowek3

  • 1Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
  • 2Grupo de Física Atómica y Molecular, Instituto de Física, Universidad de Antioquia, Medellín, Colombia
  • 3Institut des Sciences Moléculaires d'Orsay, Université Paris-Sud et CNRS, Batiment 210-350, Université Paris-Sud, F-91405 Orsay Cedex, France
  • 4Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
  • 5Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Cantoblanco, 28049 Madrid, Spain

  • *Present address: Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany.
  • Corresponding author; sanjose@fisica.udea.edu.co; Present address: Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
  • Present address: Laboratoire Aimé Cotton, CNRS, Batiment 505, F-91405 Orsay Cedex, France.
  • §Present address: Departamento de Química Física, Facultad de Ciencias Químicas (Unidad asociada CSIC), Universidad Complutense de Madrid, 28040 Madrid, Spain.
  • Present address: School of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom.

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 90, Iss. 4 — October 2014

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×