Skip to main content
Log in

Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The mid-infrared part of the electromagnetic spectrum is the so-called molecular fingerprint region because gases have tell-tale absorption features associated with molecular rovibrations. This region can be for instance exploited to detect small traces of environmental and toxic vapors in atmospheric and industrial applications. Novel Fourier-transform spectroscopy without moving parts, based on time-domain interferences between two comb sources, can in particular benefit optical diagnostics and precision spectroscopy. To date, high-resolution and -sensitivity proof-of-principle experiments have only been reported in the near-infrared region where frequency-comb oscillators are conveniently available. However, as most of the molecular transitions in this region are due to weak overtone bands, this spectral domain is not ideal for sensitive and rapid detection. Here we present a proof-of-principle experiment of frequency-comb Fourier-transform spectroscopy with two Cr2+:ZnSe femtosecond oscillators directly emitting in the 2.4 μm mid-infrared region. The acetylene absorption spectrum in the region of the \(\nu_{1}+\nu_{5}^{1}\) band, extending from 2370 to 2525 nm, could be recorded within a 10 μs acquisition time without averaging with 12 GHz resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T.W. Hänsch, Rev. Mod. Phys. 78, 1297 (2006)

    Article  ADS  Google Scholar 

  2. T. Udem, R. Holzwarth, T.W. Hänsch, Nature 416, 233 (2002)

    Article  ADS  Google Scholar 

  3. I. Coddington, W.C. Swann, N.R. Newbury, Phys. Rev. Lett. 100, 013902 (2008)

    Article  ADS  Google Scholar 

  4. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T.W. Hänsch, N. Picqué, Nat. Photonics 4, 55 (2010)

    Article  ADS  Google Scholar 

  5. F. Keilmann, C. Gohle, R. Holzwarth, Opt. Lett. 29, 1542 (2004)

    Article  ADS  Google Scholar 

  6. A. Schliesser, M. Brehm, F. Keilmann, D.W. van der Weide, Opt. Express 13, 9029 (2005)

    Article  ADS  Google Scholar 

  7. T. Yasui, E. Saneyoshi, T. Araki, Appl. Phys. Lett. 87, 061101 (2005)

    Article  ADS  Google Scholar 

  8. T. Ganz, M. Brehm, H.G. von Ribbeck, D.W. van der Weide, F. Keilmann, New J. Phys. 10, 123007 (2008)

    Article  ADS  Google Scholar 

  9. P. Giaccari, J.-D. Deschênes, P. Saucier, J. Genest, P. Tremblay, Opt. Express 16, 4347 (2008)

    Article  ADS  Google Scholar 

  10. P. Jacquet J. Mandon, B. Bernhardt, R. Holzwarth, G. Guelachvili, T.W. Hänsch, N. Picqué, in Fourier Transform Spectroscopy (Optical Society of America, Washington, DC, 2009), paper FMB2, 3 pages

    Google Scholar 

  11. N.R. Newbury, I. Coddington, W. Swann, Opt. Express 18, 7929 (2010)

    Article  Google Scholar 

  12. M.J. Thorpe, K.D. Moll, R.J. Jones, B. Safdi, J. Ye, Science 311, 1595 (2006)

    Article  ADS  Google Scholar 

  13. M.J. Thorpe, D.D. Hudson, K.D. Moll, J. Lasri, J. Ye, Opt. Lett. 32, 307 (2007)

    Article  ADS  Google Scholar 

  14. M.J. Thorpe, J. Ye, Appl. Phys. B 91, 397 (2008)

    Article  ADS  Google Scholar 

  15. M.J. Thorpe, D. Balslev Clausen, M.S. Kirchner, J. Ye, Opt. Express 16, 2387 (2008)

    Article  ADS  Google Scholar 

  16. M.J. Thorpe, F. Adler, K.C. Cossel, M.H.G. de Miranda, J. Ye, Chem. Phys. Lett. 468, 1 (2009)

    Article  ADS  Google Scholar 

  17. Ch. Gohle, B. Stein, A. Schliesser, T. Udem, T.W. Hänsch, Phys. Rev. Lett. 99, 263902 (2007)

    Article  ADS  Google Scholar 

  18. S.A. Diddams, L. Hollberg, V. Mbele, Nature 445, 627 (2007)

    Article  Google Scholar 

  19. J. Connes, H. Delouis, P. Connes, G. Guelachvili, J.-P. Maillard, G. Michel, Nouv. Rev. Opt. Appl. 1, 3 (1970)

    Article  Google Scholar 

  20. I.T. Sorokina, Opt. Mater. 26, 395 (2004)

    Article  ADS  Google Scholar 

  21. I.T. Sorokina, E. Sorokin, T. Carrig, Femtosecond pulse generation from a SESAM mode-locked Cr:ZnSe laser. CLEO/QELS, Technical Digest on CD (Optical Society of America, 2006) paper CMQ2

  22. E. Sorokin, I.T. Sorokina, Ultrashort-pulsed Kerr-lens mode locked Cr:ZnSe laser. Paper CF1.3-WED at CLEO/Europe, Munich, June 2009

  23. M.N. Cizmeciyan, H. Cankaya, A. Kurt, A. Sennaroglu, Opt. Lett. 34, 3056 (2009)

    Article  Google Scholar 

  24. E. Sorokin, I.T. Sorokina, J. Mandon, G. Guelachvili, N. Picqué, Opt. Express 15, 16540 (2007)

    Article  ADS  Google Scholar 

  25. R. D’Cunha, Y.A. Sarma, G. Guelachvili, R. Farrenq, Q. Kou, V.M. Devi, D.C. Benner, K.N. Rao, J. Mol. Spectrosc. 148, 213 (1991)

    Article  ADS  Google Scholar 

  26. L.S. Rothman, I.E. Gordon, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk, V. Boudon, L.R. Brown, A. Campargue, J.-P. Champion, K. Chance, L.H. Coudert, V. Dana, V.M. Devi, S. Fally, J.-M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J.-Y. Mandin, S.T. Massie, S.N. Mikhailenko, C.E. Miller, N. Moazzen-Ahmadi, O.V. Naumenko, A.V. Nikitin, J. Orphal, V.I. Perevalov, A. Perrin, A. Predoi-Cross, C.P. Rinsland, M. Rotger, M. Simeckova, M.A.H. Smith, K. Sung, S.A. Tashkun, J. Tennyson, R.A. Toth, A.C. Vandaele, J. Vander Auwera, J. Quant. Spectrosc. Radiat. Transf. 110, 533 (2009)

    Article  ADS  Google Scholar 

  27. E. Sorokin, S. Naumov, I.T. Sorokina, IEEE J. Sel. Top. Quantum Electron. 11, 690 (2005)

    Article  Google Scholar 

  28. M. El-Amraoui, J. Fatome, J.C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C.F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, G. Renversez, Opt. Express 18, 4547 (2010)

    Article  Google Scholar 

  29. Z. Chen, A.J. Taylor, A. Efimov, Opt. Express 17, 5852 (2009)

    Article  ADS  Google Scholar 

  30. F. Adler, K.C. Cossel, M.J. Thorpe, I. Hartl, M.E. Fermann, J. Ye, Opt. Lett. 34, 1330 (2009)

    Article  ADS  Google Scholar 

  31. P. Maddaloni, P. Malara, G. Gagliardi, P. De Natale, New J. Phys. 8, 262 (2006)

    Article  ADS  Google Scholar 

  32. P. Jacquet, J. Mandon, R. Thon, M. Jacquey, G. Guelachvili, T.W. Hänsch, N. Picqué, manuscript in preparation (2010)

  33. I. Coddington, W.C. Swann, N.R. Newbury, (2010). arXiv:1001.3865

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Picqué.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernhardt, B., Sorokin, E., Jacquet, P. et al. Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers. Appl. Phys. B 100, 3–8 (2010). https://doi.org/10.1007/s00340-010-4080-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-010-4080-0

Keywords

Navigation