Skip to main content

Advertisement

Log in

Photoinduced electron transfer in a molecular dyad by nanosecond pump—pump—probe spectroscopy

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The design of robust and inexpensive molecular photocatalysts for the conversion of abundant stable molecules like H2O and CO2 into an energetic carrier is one of the major fundamental questions for scientists nowadays. The outstanding challenge is to couple single photoinduced charge separation events with the sequential accumulation of redox equivalents at the catalytic unit for performing multi-electronic catalytic reactions. Herein, double excitation by nanosecond pump–pump–probe experiments was used to interrogate the photoinduced charge transfer and charge accumulation on a molecular dyad composed of a porphyrin chromophore and a ruthenium-based catalyst in the presence of a reversible electron acceptor. An accumulative charge transfer state is unattainable because of rapid reverse electron transfer to the photosensitizer upon the second excitation and the low driving force of the forward photodriven electron transfer reaction. Such a method allows the fundamental understanding of the relaxation mechanism after two sequential photon absorptions, deciphering the undesired electron transfer reactions that limit the charge accumulation efficiency. This study is a step toward the improvement of synthetic strategies of molecular photocatalysts for light-induced charge accumulation and more generally, for solar energy conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. S. Lewis and D. G. Nocera, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 15729–15735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. V. Balzani, A. Credi and M. Venturi, ChemSusChem, 2008, 1, 26–58.

    Article  CAS  PubMed  Google Scholar 

  3. T. Faunce, S. Styring, M. R. Wasielewski, G. W. Brudvig, A. W. Rutherford, J. Messinger, A. F. Lee, C. L. Hill, H. deGroot, M. Fontecave, D. R. MacFarlane, B. Hankamer, D. G. Nocera, D. M. Tiede, H. Dau, W. Hillier, L. Wang and R. Amal, Energy Environ. Sci., 2013, 6, 1074–1076.

    Article  Google Scholar 

  4. J. Barber, Chem. Soc. Rev., 2009, 38, 185–196.

    Article  CAS  PubMed  Google Scholar 

  5. G. Renger and T. Renger, Photosynth. Res., 2008, 98, 53–80.

    Article  CAS  PubMed  Google Scholar 

  6. J. J. Concepcion, R. L. House, J. M. Papanikolas and T. J. Meyer, Proc. Natl. Acad. Sci. U. S. A., 2012, 109, 15560–15564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. M. D. Kärkäs, O. Verho, E. V. Johnston and B. Åkermark, Chem. Rev., 2014, 114, 11863–12001.

    Article  PubMed  CAS  Google Scholar 

  8. P. Du and R. Eisenberg, Energy Environ. Sci., 2012, 5, 6012–6021.

    Article  CAS  Google Scholar 

  9. L. Sun, L. Hammarstrom, B. Akermark and S. Styring, Chem. Soc. Rev., 2001, 30, 36–49.

    Article  CAS  Google Scholar 

  10. V. Artero and M. Fontecave, Chem. Soc. Rev., 2013, 42, 2338–2356.

    Article  CAS  PubMed  Google Scholar 

  11. L. Hammarström, Acc. Chem. Res., 2015, 48, 840–850.

    Article  PubMed  CAS  Google Scholar 

  12. M. P. O'Neil, M. P. Niemczyk, W. A. Svec, D. Gosztola, G. L. Gaines and M. R. Wasielewski, Science, 1992, 257, 63–65.

    Article  CAS  PubMed  Google Scholar 

  13. S. M. Molnar, G. Nallas, J. S. Bridgewater and K. J. Brewer, J. Am. Chem. Soc., 1994, 116, 5206–5210.

    Article  CAS  Google Scholar 

  14. H. Imahori, M. Hasegawa, S. Taniguchi, M. Aoki, T. Okada and Y. Sakata, Chem. Lett., 1998, 27, 721–722.

    Article  Google Scholar 

  15. R. Konduri, H. Ye, F. M. MacDonnell, S. Serroni, S. Campagna and K. Rajeshwar, Angew. Chem., Int. Ed., 2002, 114, 3317–3319.

    Article  Google Scholar 

  16. S. Karlsson, J. Boixel, Y. Pellegrin, E. Blart, H.-C. Becker, F. Odobel and L. Hammarström, J. Am. Chem. Soc., 2010, 132, 17977–17979.

    Article  CAS  PubMed  Google Scholar 

  17. M. Orazietti, M. Kuss-Petermann, P. Hamm and O. S. Wenger, Angew. Chem., Int. Ed., 2016, 55, 9407–9410.

    Article  CAS  Google Scholar 

  18. M. Kuss-Petermann, M. Orazietti, M. Neuburger, P. Hamm and O. S. Wenger, J. Am. Chem. Soc., 2017, 139, 5225–5232.

    Article  CAS  PubMed  Google Scholar 

  19. S. Mendes Marinho, M.-H. Ha-Thi, V.-T. Pham, A. Quaranta, T. Pino, C. Lefumeux, T. Chamaille, W. Leibl and A. Aukauloo, Angew. Chem., Int. Ed., 2017, 56, 15936–15940.

    Article  CAS  Google Scholar 

  20. T.-T. Tran, M.-H. Ha-Thi, T. Pino, A. Quaranta, C. Lefumeux, W. Leibl and A. Aukauloo, J. Phys. Chem. Lett., 2018, 9, 1086–1091.

    Article  CAS  PubMed  Google Scholar 

  21. J. J. Concepcion, J. W. Jurss, M. K. Brennaman, P. G. Hoertz, A. O. T. Patrocinio and N. Y. Murakami Iha, J. L. Templeton, T. J. Meyer, Acc. Chem. Res., 2009, 42, 1954–1965.

    Article  CAS  PubMed  Google Scholar 

  22. X. Sala, S. Maji, R. Bofill, J. García-Antón, L. Escriche and A. Llobet, Acc. Chem. Res., 2014, 47, 504–516.

    Article  CAS  PubMed  Google Scholar 

  23. C. W. Cady, R. H. Crabtree and G. W. Brudvig, Coord. Chem. Rev., 2008, 252, 444–455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. F. Puntoriero, A. Sartorel, M. Orlandi, G. La Ganga, S. Serroni, M. Bonchio, F. Scandola and S. Campagna, Coord. Chem. Rev., 2011, 255, 2594–2601.

    Article  CAS  Google Scholar 

  25. W. Chen, F. N. Rein and R. C. Rocha, Angew. Chem., Int. Ed., 2009, 48, 9672–9675.

    Article  CAS  Google Scholar 

  26. A. K. Vannucci, J. F. Hull, Z. Chen, R. A. Binstead, J. J. Concepcion and T. J. Meyer, J. Am. Chem. Soc., 2012, 134, 3972–3975.

    Article  CAS  PubMed  Google Scholar 

  27. A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser and A. von Zelewsky, Coord. Chem. Rev., 1988, 84, 85–277.

    Article  CAS  Google Scholar 

  28. L.-L. Li and E. W.-G. Diau, Chem. Soc. Rev., 2013, 42, 291–304.

    Article  CAS  PubMed  Google Scholar 

  29. G. de la Torre, G. Bottari, M. Sekita, A. Hausmann, D. M. Guldi and T. Torres, Chem. Soc. Rev., 2013, 42, 8049–8105.

    Article  PubMed  CAS  Google Scholar 

  30. D.-I. Won, J.-S. Lee, Q. Ba, Y.-J. Cho, H.-Y. Cheong, S. Choi, C. H. Kim, H.-J. Son, C. Pac and S. O. Kang, ACS Catal., 2018, 1018–1030, DOI: 10.1021/acscatal.7b02961.

    Google Scholar 

  31. Y.-J. Yuan, D. Chen, J. Zhong, L.-X. Yang, J.-J. Wang, Z.-T. Yu and Z.-G. Zou, J. Phys. Chem. C, 2017, 121, 24452–24462.

    Article  CAS  Google Scholar 

  32. Y. Tamaki and O. Ishitani, ACS Catal., 2017, 7, 3394–3409.

    Article  CAS  Google Scholar 

  33. J. Bonin, A. Maurin and M. Robert, Coord. Chem. Rev., 2017, 334, 184–198.

    Article  CAS  Google Scholar 

  34. K. Ladomenou, M. Natali, E. Iengo, G. Charalampidis, F. Scandola and A. G. Coutsolelos, Coord. Chem. Rev., 2015, 304–305, 38–54.

    Article  CAS  Google Scholar 

  35. A. Quaranta, G. Charalambidis, C. Herrero, S. Margiola, W. Leibl, A. Coutsolelos and A. Aukauloo, Phys. Chem. Chem. Phys., 2015, 17, 24166–24172.

    Article  CAS  PubMed  Google Scholar 

  36. J. J. Concepcion, J. W. Jurss, M. R. Norris, Z. Chen, J. L. Templeton and T. J. Meyer, Inorg. Chem., 2010, 49, 1277–1279.

    Article  CAS  PubMed  Google Scholar 

  37. W. Chen, F. N. Rein, B. L. Scott and R. C. Rocha, Chem.–Eur. J., 2011, 17, 5595–5604.

    Article  CAS  PubMed  Google Scholar 

  38. O. Hamelin, P. Guillo, F. Loiseau, M.-F. Boissonnet and S. Ménage, Inorg. Chem., 2011, 50, 7952–7954.

    Article  CAS  PubMed  Google Scholar 

  39. P. Guillo, O. Hamelin, P. Batat, G. Jonusauskas, N. D. McClenaghan and S. Ménage, Inorg. Chem., 2012, 51, 2222–2230.

    Article  CAS  PubMed  Google Scholar 

  40. M. Yamamoto, J. Föhlinger, J. Petersson, L. Hammarström and H. Imahori, Angew. Chem., Int. Ed., 2017, 56, 3329–3333.

    Article  CAS  Google Scholar 

  41. J. Rodriguez, C. Kirmaier and D. Holten, J. Am. Chem. Soc., 1989, 111, 6500–6506.

    Article  CAS  Google Scholar 

  42. T. W. Ebbesen, G. Levey and L. K. Patterson, Nature, 1982, 298, 545–548.

    Article  CAS  Google Scholar 

  43. R. Lomoth, T. Häupl, O. Johansson and L. Hammarström, Chem.–Eur. J., 2002, 8, 102–110.

    Article  CAS  PubMed  Google Scholar 

  44. C. Paliteiro and A. Sobral, Electrochim. Acta, 2005, 50, 2445–2451.

    Article  CAS  Google Scholar 

  45. L. Flamigni, E. Baranoff, J.-P. Collin, J.-P. Sauvage and B. Ventura, ChemPhysChem, 2007, 8, 1943–1949.

    Article  CAS  PubMed  Google Scholar 

  46. M. Skaisgirski, X. Guo and O. S. Wenger, Inorg. Chem., 2017, 56, 2432–2439.

    Article  CAS  PubMed  Google Scholar 

  47. M. Kuss-Petermann and O. S. Wenger, Helv. Chim. Acta, 2017, 100, e1600283.

    Article  CAS  Google Scholar 

  48. R. J. Davidson, L. E. Wilson, A. R. Duckworth, D. S. Yufit, A. Beeby and P. J. Low, Dalton Trans., 2015, 44, 11368–11379.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the LabEx PALM (ANR-10-LABX-0039-PALM), the LabEx CHARMMMAT and the “IDI 2014” project funded by the IDEX Paris-Saclay, ANR-11-IDEX-003-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.-H. Ha-Thi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha-Thi, MH., Pham, VT., Pino, T. et al. Photoinduced electron transfer in a molecular dyad by nanosecond pump—pump—probe spectroscopy. Photochem Photobiol Sci 17, 903–909 (2018). https://doi.org/10.1039/c8pp00048d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00048d

Navigation