Skip to main content

Advertisement

Log in

Hydrochemistry in coastal aquifer of southwest Bangladesh: origin of salinity

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

In the coastal region of Bangladesh, groundwater is mainly used for domestic and agricultural purposes, but salinization of many groundwater resources limits its suitability for human consumption and practical application. This paper reports the results of a study that has mapped the salinity distribution in different aquifer layers up to a depth of 300 m in a region bordering the Bay of Bengal based on the main hydrochemistry and has investigated the origin of the salinity using Cl/Br ratios of the samples. The subsurface consists of a sequence of deltaic sediments with an alternation of more sandy and clayey sections in which several aquifer layers can be recognized. The main hydrochemistry shows different main water types in the different aquifers, indicating varying stages of freshening or salinization processes. The most freshwater, soft NaHCO3-type water with Cl concentrations mostly below 100 mg/l, is found in the deepest aquifer at 200–300 m below ground level (b.g.l.), in which the fresh/saltwater interface is pushed far to the south. Salinity is a main problem in the shallow aquifer systems, where Cl concentrations rise to nearly 8000 mg/l and the groundwater is mostly brackish NaCl water. Investigation of the Cl/Br ratios has shown that the source of the salinity in the deep aquifer is mixing with old connate seawater and that the saline waters in the more shallow aquifers do not originate from old connate water or direct seawater intrusion, but are derived from the dissolution of evaporite salts. These must have been formed in a tidal flat under influence of a strong seasonal precipitation pattern. Long dry seasons with high evaporation rates have evaporated seawater from inundated gullies and depressions, leading to salt precipitation, while subsequent heavy monsoon rains have dissolved the formed salts, and the solution has infiltrated in the subsoil, recharging groundwater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abedin M, Habiba U, Shaw R (2012) Impacts of salinity, arsenic and drought in south-western Bangladesh. Environ Disaster Link 9:165

    Article  Google Scholar 

  • Abedin MA, Habiba U, Shaw R (2014) Community perception and adaptation to safe drinking water scarcity: salinity, arsenic, and drought risks in coastal Bangladesh. Int J Disaster Risk Sci 5(2):110–124

    Article  Google Scholar 

  • Afroza R, Mazumder QH, Jahan CS, Kazi MAI, Ahsan MA, Al-Mansur MA (2009) Hydrochemistry and origin of salinity in groundwater in parts of lower Tista floodplain, Northwest Bangladesh. J Geol Soc India 74(2):223–232

    Article  Google Scholar 

  • Aggarwal PK, Froehlich K, Basu A, Poreda R, Kulkarni K, Tarafdar S, Ali M, Ahmed N, Hussain A, Rahman M (2000) A report on isotope hydrology of groundwater in Bangladesh: implications for characterization and mitigation of arsenic in groundwater. International Atomic Energy Agency, Department of Technical Co-operation, Vienna (Austria)

    Google Scholar 

  • Al Farrah N, Martens K, Walraevens K (2011) Hydrochemistry of the upper miocene-pliocene quaternary aquifer complex of Jifarah plain, NW-Libya. Geol Belgica 14(3–4):159–174

    Google Scholar 

  • APHA (American Public Health Association) (1985) Standard methods for the examination of water and wastewater. Greenberg AE (APHA), Trussell, RR, Clesceri LS (eds). American Public Health Association, Washington DC

  • Bahar MM, Reza MS (2010) Hydrochemical characteristics and quality assessment of shallow groundwater in a coastal area of Southwest Bangladesh. Environ Earth Sci 61(5):1065–1073

    Article  Google Scholar 

  • BBS (2005) Statistical Year Book of Bangladesh. The Bangladesh Bureau of Statistics, Dhaka, Bangladesh

    Google Scholar 

  • BGS (British Geological Survey) and DPHE (Department of Public Health Engineering) (2001) Arsenic contamination of groundwater in Bangladesh, vol 2, Final Report, BGS Technical Report WC/00/19

  • Bhattacharya P, Jacks G, Ahmed K, Routh J, Khan A (2002) Arsenic in groundwater of the Bengal Delta Plain aquifers in Bangladesh. Bull Environ Contam Toxicol 69(4):538–545

    Article  Google Scholar 

  • British Geological Survey (BGS) (2001) Groundwater quality: Bangladesh. BGS Technical Report No. WC/00/19)/Volume 1

  • Calmbach L (1997) “AquaChem 3.6. 2.” Hydrogeochemical data analysis, plotting and modeling, Waterloo Hydrogeologic, Ontario, Canada

  • Claassen HC (1982) Guidelines and techniques for obtaining water samples that accurately represent the water chemistry of an aquifer, US Geological Survey

  • Cooper HH, Jacob C (1946) A generalized graphical method for evaluating formation constants and summarizing well-field history. Eos Trans Am Geophys Union 27(4):526–534

    Article  Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133(3465):1702–1703

    Article  Google Scholar 

  • Custodio E (2007) Groundwater protection and contamination. In: International symposium on groundwater sustainability (ISGWAS), Alicante, 2006. Proceedings, pp 161–175

  • Dávila Pórcel RA, De León Gómez H, Schüth C (2011) Urban impacts analysis on hydrochemical and hydrogeological evolution of groundwater in shallow aquifer Linares, Mexico. Environ Earth Sci 66(7):1871–1880

    Article  Google Scholar 

  • Department of Public Health Engineering (DPHE) (1999) Main report and volumes S1–S5, report on Phase I, Groundwater studies for arsenic contamination in Bangladesh, Dhaka, Bangladesh

  • Faneca Sanchez M, Bashar K, Janssen GMCM, Vogels M, Snel J, Zhou Y, Stuurman R, Dude Essink GHP (2015) SWIBANGLA: managing salt water intrusion impacts in coastal groundwater systems of Bangladesh, p 153

  • FAO (2003) Groundwater management. The search for practical approaches. Water Rep 25:1–43

    Google Scholar 

  • Ferris JG, Knowles D, Brown R, Stallman RW (1962) Theory of aquifer tests, US Government Printing Office Washington

  • Fetter CW, Fetter C (1999) Contaminant hydrogeology. Prentice Hall, New Jersey

    Google Scholar 

  • Gheorhge A (1979) Processing and synthesis of hydrogeological data. Abacus, Aess

  • Grube A, Schmalz B, Nachtigall KH, Wichmann K (1999) Provisional results of investigations on groundwater salinization with emphasis on the region of Lübeck, Northern Germany. In: Proceedings of SWIM15, Ghent, 1998. Natuurwet. Tijdschr. 79, pp 164–171

  • Gupta H, Kao S-J, Dai M (2012) The role of mega dams in reducing sediment fluxes: a case study of large Asian rivers. J Hydrol 464:447–458

    Article  Google Scholar 

  • Halim MA, Majumder RK, Nessa SA, Hiroshiro Y, Uddin MJ, Shimada J, Jinno K (2009) Hydrogeochemistry and arsenic contamination of groundwater in the Ganges Delta Plain, Bangladesh. J Hazard Mater 164(2–3):1335–1345

    Article  Google Scholar 

  • Harun M, Kabir G (2013) Evaluating pond sand filter as sustainable drinking water supplier in the Southwest coastal region of Bangladesh. Appl Water Sci 3(1):161–166

    Article  Google Scholar 

  • Hassan MQ (2000) Hydrochemistry of lowlands water of southwest Bangladesh. Lowland Technol Int Off J Int Assoc Lowland Technol 2(1):15–22

    Google Scholar 

  • Healy RW, Cook PG (2002) Using groundwater levels to estimate recharge. Hydrogeol J 10:91–109

    Article  Google Scholar 

  • Hem JD (1985) Study and interpretation of the chemical characteristics of natural water. Department of the Interior, US Geological Survey

  • Hvorslev MJ (1951) Time lag and soil permeability in ground-water observations

  • Islam MM, Chou F-F, Kabir M, Liaw C-H (2010) Rainwater: a potential alternative source for scarce safe drinking and arsenic contaminated water in Bangladesh. Water Resour Manage 24(14):3987–4008

    Article  Google Scholar 

  • Kamruzzaman A, Ahmed F (2006) Study of performance of existing pond sand filters in different parts of Bangladesh. Sustainable development of water resources, water supply and environmental sanitation. In: 32nd WEDC conference, Colombo, Sri Lanka, pp 377–380

  • Khan AE, Ireson A, Kovats S, Mojumder SK, Khusru A, Rahman A, Vineis P, Labrese Ej V (2011) Drinking water salinity and maternal health in coastal Bangladesh: implications of climate change. Environ Health Perspect 119(9):1328–1332

    Article  Google Scholar 

  • Khan AE, Scheelbeek PFD, Shilpi AB, Chan Q, Mojumder SK, Rahman A, Haines A, Vineis P (2014) Salinity in drinking water and the risk of (pre) eclampsia and gestational hypertension in coastal Bangladesh: a case–control study. PLoS ONE 9(9):e108715

    Article  Google Scholar 

  • Kruseman GP, De Ridder NA (1970) Analysis and evaluation of pumping test data. International Institute for Land Reclamation and Improvement, Wageningen

    Google Scholar 

  • Michael HA, Voss CI (2009) Controls on groundwater flow in the Bengal Basin of India and Bangladesh: regional modeling analysis. Hydrogeol J 17(7):1561–1577

    Article  Google Scholar 

  • MPO (Master Plan Organization) (1987) Groundwater Resources of Bangladesh; Technical Report No. 5. Master Plan Organization, Dhaka, Harza Engineering USA in association with Sir MacDonald and Partners, UK, Meta Consultant, USA and EPC Ltd. Dhaka

  • Mtoni Y, Mjemah IC, Bakundukize C, Van Camp M, Martens K, Walraevens K (2013) Saltwater intrusion and nitrate pollution in the coastal aquifer of Dar es Salaam, Tanzania. Environ Earth Sci 70(3):1091–1111

    Article  Google Scholar 

  • Nazim U, Anisul H (2010) Salinity response in southwest coastal region of Bangladesh due to hydraulic and hydrologic parameters. Int J Sustain Agric Technol 6:01–07

    Google Scholar 

  • Oude Essink GHP (2001) Improving fresh groundwater supply problems and solutions. Ocean Coast Manag 44:429–449

    Article  Google Scholar 

  • Piper AM (1944) A graphic procedure in the geochemical interpretation of water-analyses. Eos Trans Am Geophys Union 25(6):914–928

    Article  Google Scholar 

  • Post V, Abarca E (2010) Saltwater and freshwater interactions in coastal aquifers. Hydrogeol J 18:1–4

    Article  Google Scholar 

  • Pulido-Leboeuf P (2004) Seawater intrusion and associated processes in a small coastal complex aquifer (Castell de Ferro, Spain). Appl Geochem 19(10):1517–1527

    Article  Google Scholar 

  • Rahman MATMT, Majumder RK, Rahman SH, Halim MA (2011) Sources of deep groundwater salinity in the southwestern zone of Bangladesh. Environ Earth Sci 63(2):363–373

    Article  Google Scholar 

  • Rahman MAT, Rahman SH, Majumder RK (2012) Groundwater quality for irrigation of deep aquifer in southwestern zone of Bangladesh. Songklanakarin J Sci Technol 34(3)

  • Stuyfzand P (1986) A new hydrochemical classification of water types with examples of application to The Netherlands. H20 19:562–568

    Google Scholar 

  • Subramani T, Elango L, Damodarasamy S (2005) Groundwater quality and its suitability for drinking and agricultural use in Chithar River Basin, Tamil Nadu, India. Environ Geol 47(8):1099–1110

    Article  Google Scholar 

  • UNDP (1982) Groundwater survey. The hydrogeological condition of Bangladesh. United Nations Development Programme. Technical Report, DP/UN/BGD-74-009/1

  • Van Camp M, Mtoni Y, Mjemah IC, Bakundukize C, Walraevens K (2014) Investigating seawater intrusion due to groundwater pumping with schematic model simulations: the example of the Dar es Salaam coastal aquifer in Tanzania. J Afr Earth Sc 96:71–78

    Article  Google Scholar 

  • Walraevens K, Van Camp M (2005) Advances in understanding natural groundwater quality controls in coastal aquifers. Groundwater and Saline Intrusion. Selected papers from the 18th SWIM meeting, 1st edn. IGGM, Madrid

    Google Scholar 

  • Walraevens K, Cardenal J, Van Camp M (2007) Reaction transport modelling of a freshening aquifer (Tertiary Ledo-Paniselian Aquifer, Flanders-Belgium). Appl Geochem 22:289–305

    Article  Google Scholar 

  • Walraevens K, Mjemah IC, Mtoni Y, Van Camp M (2015) Sources of salinity and urban pollution in the Quaternary sand aquifers of Dar es Salaam, Tanzania. J Afr Earth Sc 102:149–165

    Article  Google Scholar 

  • White PR, Franke M, Hindle P (1997) Integrated solid waste management—a lifecycle inventory. Blackie Academic & Professional. ISBN 0-7514-0046

  • WHO (2004) Guidelines for drinking-water quality. vol 1, Recommendations

  • Woobaidullah A, Rahman M, Romer A, Arndt R (1996) Geoelectric resistivity survey for suitable freshwater aquifer identification in the coastal Belt of south-west Bangladesh. Jb Geol BA 139:127–137

    Google Scholar 

Download references

Acknowledgements

The first author is indebted to Bangladesh Water Development Board (BWDB) and International Atomic Energy Agency (IAEA), Vienna, Austria, for providing necessary data for this research. Special thanks to Ms. Jill Van Reybrouck for analyzing the water samples in the Laboratory for Applied Geology and Hydrogeology, Department of Geology, Ghent University. The authors also thank Mr. Md. Masud Karim, Bangladesh Atomic Energy Commission for his help during water sampling campaign.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Mizanur Rahman Sarker.

Appendices

Appendix 1: List of water samples collected from the study area

 

Well Id

Depth (m)

pH

Eh (mV)

EC (µS/cm)

TDS (mg/l)

Na+ (mg/l)

K+ (mg/l)

Mg2+ (mg/l)

Ca2+ (mg/l)

Cl (mg/l)

SO42−(mg/l)

NO3(mg/l)

HCO3(mg/l)

Fe2+ (mg/l)

Br (mg/l)

Secondary data (wet season)

LW1

119

7.58

− 29.3

1773

1189

364.9

8.23

10.00

10.0

322.5

0.0

0.6

457.0

1.55

0.15

LW2

101

7.35

− 21.6

2970

1593

532.0

28.55

90.00

20.0

712.5

0.0

6.6

189.1

6.61

0.13

LW3

113

7.22

− 12.1

4190

2942

600.7

10.90

130.00

110.0

1860.0

0.0

2.9

213.5

6.19

0.20

LW4

101

7.17

− 11.5

6670

4244

1256.0

15.44

90.00

50.0

2620.0

1.0

4.2

195.2

3.30

0.09

LW5

136

7.37

− 25.2

1270

889

231.4

8.28

25.00

20.0

275.0

5.0

30.0

280.6

0.86

0.01

LW6

136

7.39

− 20.3

1136

787

115.2

7.76

45.00

70.0

226.0

0.0

1.0

274.5

1.28

0.15

LW7

136

7.49

− 24.6

1875

1166

234.7

11.95

70.00

70.0

547.5

0.0

2.3

219.6

2.20

0.19

LW8

98

7.26

− 13.8

12,901

10,227

2926.0

30.77

320.00

150.0

6625.0

0.0

8.7

146.4

17.26

0.14

LW9

102

7.57

− 35.6

5540

3501

1023.0

10.20

85.00

−  

2210.0

0.0

4.3

152.5

3.00

0.04

LW10

122

7.55

− 35.3

1668

1056

279.7

6.55

45.00

10.0

375.0

0.0

1.2

323.3

2.07

0.13

LW11

122

7.67

− 33.9

2270

1160

341.6

10.21

60.00

20.0

475.0

0.0

1.2

244.0

0.47

0.06

 

LW12

116

7.38

− 25

5120

3320

829.7

11.72

130.00

110.0

1980.0

0.0

3.6

244.0

2.87

0.17

 

LW13

122

7.41

− 25

15,960

10,209

2910.0

114.26

180.00

40.0

6850.0

0.0

7.6

103.7

0.65

0.17

 

LW14

92

7.13

− 4.7

13,170

8209

2231.0

11.11

273.45

219.2

5325.0

0.0

1.2

134.2

9.50

0.44

 

LW15

110

7.28

− 12.2

3800

2622

391.5

15.75

154.80

110.4

1770.0

0.0

3.6

164.7

7.80

0.59

 

LW16

86

7.21

− 14.1

15,240

9852

2871.5

1.95

277.75

91.8

6525.0

0.0

11.1

54.9

13.70

0.68

 

LW17

86

6.93

− 1.1

16,820

10,235

2650.7

23.84

467.85

51.1

6875.0

1.0

0.3

128.1

21.00

0.54

 

LW18

98

6.86

7.5

15,520

10,936

2959.9

36.28

337.40

862.1

6575.0

0.0

0.1

134.2

8.85

0.60

 

LW19

107

7.08

− 5

10,140

7053

1336.4

21.63

301.25

367.0

4900.0

4.0

8.7

91.5

14.10

0.63

 

LW20

86

7.30

− 16.3

6750

4176

837.9

29.07

235.30

388.2

2550.0

1.0

4.6

103.7

12.10

0.52

 

LW21

113

7.38

− 23.1

9360

5856

1791.8

34.57

138.95

241.9

3510.0

0.0

0.3

115.9

7.12

0.66

 

LW22

91

7.20

− 22.3

1004

565

13.4

2.41

34.35

95.1

157.0

1.0

0.3

225.7

2.80

0.47

 

LW23

116

7.14

− 6

3960

2472

111.8

9.58

220.90

291.7

1730.0

0.0

0.3

91.5

8.00

0.45

 

LW24

86

7.19

− 10

4270

2856

629.8

9.01

113.25

248.2

1660.0

0.0

0.5

183.0

3.90

0.52

 

LW25

104

7.46

− 22.6

9190

5472

1491.6

7.50

240.55

155.8

3430.0

5.0

0.3

122.0

1.00

0.69

Secondary data (wet season)

LW26

98

7.33

− 21.7

11,400

7323

1794.1

8.37

246.50

175.9

4925.0

2.0

0.3

152.5

3.50

0.35

LW27

92

7.20

− 10.5

14,000

9367

1852.3

5.44

435.80

338.4

6550.0

83.0

0.5

85.4

1.80

0.52

LW28

92

7.04

− 2.7

18,480

11,125

2537.7

31.12

354.65

200.4

7725.0

1.0

7.0

244.0

7.10

0.60

LW29

92

7.47

− 17.1

774

423

47.5

6.67

3.10

75.9

120.0

0.0

0.8

152.5

2.40

0.23

LW30

92

7.45

− 20.9

2880

1534

269.1

3.61

84.70

171.2

832.5

0.0

0.4

146.4

5.50

0.33

LW31

92

6.93

2.7

9530

5928

1397.0

4.16

277.20

504.9

3690.0

1.0

0.3

42.7

3.40

0.62

LW32

92

7.07

− 5.7

8370

5482

1085.8

12.06

298.25

391.4

3580.0

1.0

0.2

97.6

11.40

0.54

LW33

92

7.13

− 3.5

9980

6114

1310.9

14.43

342.70

393.6

3820.0

104.0

1.2

115.9

8.10

0.44

RW1

1

7.80

− 54.20

206

179

12.8

4.23

5.32

16.0

24.0

12.0

0.7

103.7

0.09

0.07

RW2

1

8.10

− 68.30

189

137

11.4

3.24

4.37

10.2

12.5

18.7

2.5

67.1

5.17

0.25

RW3

1

8.06

− 60.60

441

555

142.6

7.33

22.23

16.9

245.0

30.9

1.5

79.3

5.35

1.10

NW1

299

7.88

− 56.9

889

695

222.6

3.11

1.06

6.5

52.5

4.8

0.1

396.5

0.66

0.25

 

NW2

336

8.31

− 67.4

823

977

81.3

1.87

121.00

72.1

325.0

26.7

0.3

341.6

0.22

0.29

 

NW3

91

7.21

− 11.7

1205

768

171.3

8.75

30.46

70.6

160.0

8.7

0.4

292.8

16.05

1.99

 

NW4

201

7.58

− 34.5

830

590

159.6

4.64

7.53

26.2

75.0

4.0

0.1

305.0

2.39

0.22

 

NW5

314

8.43

− 84.9

741

556

186.6

2.93

1.21

6.9

52.5

11.0

0.6

286.7

0.67

0.26

 

NW6

24

7.35

− 22.9

1216

817

179.5

7.09

36.12

69.7

130.0

13.1

2.3

366.0

3.46

0.28

Primary data (wet season)

BRGN-3

229

7.6

− 63.9

1281

1078

265.5

4

3.25

4.2

50.5

3.1

7.8

735.7

0.21

0.674

GLCP-1

283

7.72

− 69.8

784

731

174.0

3.08

3.65

10.0

2.0

0.0

4.0

530.1

0.09

0.107

AMTL-1

290

7.66

− 68

845

773

194.6

2.86

3.55

10.3

9.5

0.0

7.3

542.9

0.12

0.256

BGRN-4

River Water

7.5

− 58.6

217

165

4.6

3.03

5.05

27.1

9.5

12.0

5.1

97.6

0.02

0.099

BNAMPZ-2

39

6.5

− 16.8

1862

1096

221.3

10.5

40.3

49.4

221.9

0.2

40.6

509.4

0.04

5.26

BNAMPZ-4

102

7.35

− 49.9

855

848

216.5

2.56

2

9.9

10.0

0.0

6.5

599.6

0.13

0.285

BPHL-1

259

7.21

− 42.5

659

623

141.5

4

7.8

16.6

11.4

0.0

28.6

400.2

0.25

0.261

BPHL-2

253

7.21

− 42.3

810

687

144.8

4

4.75

21.9

44.2

0.0

2.4

463.6

0.09

0.563

BRGN-1

293

7.88

− 79.9

978

885

207.2

3

2.55

7.4

3.6

0.6

5.0

653.3

0.22

0.219

BTG-1

262

7.51

− 58.9

2020

1302

383.0

5.5

19.75

11.1

345.0

0.0

2.6

531.3

0.24

5.6

BTG-2

274

7.82

− 75.3

1039

881

211.0

3.07

3.7

9.1

37.3

0.4

8.5

607.6

0.12

0.691

BTG-3

302

7.35

− 74.5

1025

948

241.0

3.04

2.9

8.2

14.8

14.3

7.0

653.3

0.21

0.29

BRGN-2

366

7.85

− 77.9

1393

1081

285.8

3.04

3.4

9.0

65.6

3.5

5.0

702.1

0.45

2.63

 

DUMKI-1

61

7.58

− 62.9

950

781

201.1

2.14

7.15

12.9

90.7

0.0

6.4

458.7

0.016

1.339

 

DUMKI-2

28

7.65

− 67.1

709

650

163.9

1.77

2.3

10.7

13.5

0.0

7.1

446.5

0.06

0.355

 

DUMKI-3

253

7.55

− 60.9

565

750

146.8

2.94

12.15

28.6

6.7

0.0

15.8

526.4

0.19

0.107

 

DUMKI-4

259

7.38

− 51.2

663

610

135.8

3.17

4.85

12.2

10.0

0.0

17.5

415.4

0.21

0.258

 

GLCP-2

265

7.41

− 53.4

975

837

218.1

4.5

6.2

10.1

58.0

0.0

5.4

530.7

0.24

0.698

 

MIR-1

271

7.44

− 55.2

1652

1015

287.6

4.3

11.45

17.1

229.5

0.0

7.8

453.2

0.21

3.346

 

PATUA-1

259

7.78

− 73.5

770

734

155.3

2.81

25.15

12.5

7.5

0.0

5.9

521.6

0.06

0.133

 

PATUA-2

305

7.62

− 64.7

913

785

200.6

3.13

3.2

9.3

41.2

0.0

6.5

518.5

0.14

0.687

 

PRGT-1

6

6.99

− 30.4

10,180

7012

1840.0

32.5

226

186.2

3551.8

115.4

9.7

1026.0

9.95

37.17

 

PRGT-2

259

7.7

− 69.3

4530

2721

888.0

7.3

15.65

20.4

1108.0

0.8

26.1

640.5

0.35

20.72

 

PRGT-3

253

7.86

− 78.3

1137

980

227.8

4

3.5

8.8

34.9

1.7

3.0

692.4

0.19

0.577

 

Mean

 

7.44

− 36.80

4414

2994

739

11.01

104

105

1689

7.4

5.8

315.6

3.78

1.50

 

Max

 

8.5

7.50

18,480

11,124

2959.9

114.26

467.85

862

7725.0

115.4

40.6

1026

21.00

37.17

 

Min

 

6.5

− 84.90

137

137

4.6

1.77

1.06

4.2

2.0

0.0

0.0

25

0.02

0.01

 

SD

 

0.33

25.87

5073

3261

859.5

15.75

126.79

153.9

2291.0

21.6

7.7

217.3

4.91

5.20

Appendix 2: List of secondary water samples in the dry season

 

Sample ID

Depth (m)

pH

Eh (mV)

EC (µS/cm)

TDS (mg/l)

Na+ (mg/l)

K+ (mg/l)

Mg2+ (mg/l)

Ca2+ (mg/l)

Cl (mg/l)

SO42− (mg/l)

NO3 (mg/l)

HCO3 (mg/l)

Fe2+ (mgl)

Br (mg/l)

Secondary data (dry season)

ND1

67

7.6

− 31.7

13,600

8758

2817.5

8.0

14.2

1.0

5600

7.0

21.5

286.7

9.21

0.28

ND2

128

8.1

− 63.2

1878

1497

380.4

12.0

48.3

59.7

504

4.1

1.7

481.9

2.97

0.20

ND3

336

8.9

− 125.2

941

869

308.7

2.9

3.7

2.1

33

13.0

0.4

500.2

0.39

0.37

ND4

299

7.4

− 90.0

2790

1969

566.7

13.7

76.6

0.3

936

5.5

1.4

366.0

3.38

0.42

ND5

61

7.2

− 8.9

43,300

29,616

8848.4

246.8

1096.8

124.5

19,133

6.4

131.5

24.4

0.24

0.03

ND6

298

7.7

− 35.9

11,200

7594

2726.3

24.2

65.3

1.2

4350

9.6

3.2

408.7

1.23

1.44

ND7

91

7.1

− 43.5

6880

4637

1239.7

24.4

141.4

57.6

2733

11.4

12.2

414.8

18.19

0.11

ND8

180

8.8

− 102.0

3010

2115

675.4

21.5

70.1

42.4

910

8.4

5.3

378.2

2.52

0.30

ND9

268

7.4

− 137.5

2130

1585

468.5

8.0

13.8

3.1

424

10.8

0.4

646.6

0.24

0.40

LDs1

30

7.7

− 49.6

26,800

16,493

4965.8

118.2

79.7

122.7

10,100

543.7

17.0

536.8

0.11

0.12

LDs2

30

7.3

− 25.8

23,500

15,811

4861.2

156.4

519.6

141.0

9550

79.3

6.0

494.1

0.46

0.58

LDs3

30

7.0

− 5.0

26,400

16,980

4690.6

179.6

732.9

292.7

9700

1130.0

4.0

244.0

0.41

0.13

LDs4

30

7.2

− 25.7

19,660

12,297

3715.2

152.4

405.6

125.6

7450

3.0

28.0

414.8

1.07

0.20

LDs5

30

7.2

− 29.0

6450

4806

1730.5

43.5

69.9

44.8

1525

750.0

0.5

640.5

0.20

0.21

LDs6

30

7.7

− 36.0

4260

2969

1187.5

35.8

63.7

17.6

1252

4.0

42.0

363.0

0.48

1.90

LDs7

30

7.6

− 45.5

17,580

10,643

2928.6

53.5

381.4

208.3

6725

40.0

12.0

292.8

0.10

0.30

LDs8

30

7.7

− 50.6

13,810

8689

2269.6

65.4

341.7

187.4

5075

123.0

9.0

616.1

0.15

0.04

LDs9

30

7.8

− 58.3

13,420

8397

2479.5

44.5

270.0

89.1

4075

1050.0

8.0

378.2

0.22

0.72

LDs10

30

7.7

− 47.8

18,350

10,642

2777.7

74.9

417.0

142.8

6750

56.0

28.0

390.4

0.06

0.10

LDs11

30

7.3

− 30.5

7360

4039

813.4

30.1

293.8

374.9

2385

3.0

40.0

97.6

0.07

0.01

 

LD1

98

7.9

− 45.2

1000

905

255.4

1.5

5.0

20.0

135

0.0

0.7

463.6

0.23

0.21

 

LD2

119

7.3

− 28.1

1840

1265

452.7

4.0

10.0

10.0

277

0.0

0.4

475.8

2.76

0.07

 

LD3

101

7.6

− 31.1

3270

1489

375.5

27.6

70.0

90.0

682

0.0

5.5

213.5

10.52

0.2

 

LD4

113

7.4

− 35.5

4630

3034

672.1

11.9

120.0

140.0

1870

0.0

2.2

207.4

8.95

0.12

 

LD5

101

8.0

− 46.3

5960

3683

1098.0

17.7

75.0

40.0

2290

3.0

5.2

146.4

0.3

0.14

 

LD6

136

5.9

− 43.0

1337

985

116.4

10.3

45.0

90.0

238

1.0

1.5

475.8

0.1

0.13

 

LD7

136

5.9

− 43.4

1308

906

149.2

15.4

30.0

120.0

367

1.0

2.1

213.5

0.12

0.05

 

LD8

136

6.1

− 53.0

1292

797

96.5

7.2

50.0

120.0

305

0.0

0.9

207.4

2.33

0.21

 

LD9

136

6.1

− 57.6

2070

1154

339.3

10.5

55.0

60.0

525

1.0

2.4

146.4

0.1

0.09

 

LD10

98

5.7

− 28.2

16,340

10,585

2857.0

52.8

420.0

180.0

7000

0.0

11.2

42.7

19.35

0.02

 

LD11

102

7.5

− 43.7

5830

3321

1029.5

18.8

85.0

70.0

1930

0.0

4.4

170.8

4.74

0.1

Secondary data (dry season)

LD12

122

8.2

− 72.4

2190

1086

229.0

6.4

50.0

40.0

482

0.0

1.7

268.4

1.2

0.15

LD13

122

7.5

− 70.4

2720

1388

350.2

9.0

60.0

60.0

650

5.0

2.2

244.0

0.1

0.02

LD14

116

8.6

− 81.7

5440

3293

787.2

14.7

135.0

90.0

1960

1.0

2.7

292.8

2.5

0.21

LD15

122

7.3

− 80.0

12,160

7620

1963.4

20.0

210.0

120.0

5000

0.0

3.6

286.0

3.5

0.1

LD16

122

6.3

− 66.6

15,810

9526

2666.0

98.1

210.0

30.0

6400

1.0

11.3

103.7

4

0.21

LD17

122

6.2

− 63.9

10,870

7169

2071.0

55.3

90.0

40.0

4500

2.0

6.1

384.3

0.32

0.06

LD18

92

7.8

− 77.5

13,430

8769

2458.9

10.5

369.0

361.6

5450

1.0

1.2

103.7

10

0.6

LD19

110

7.8

− 68.4

3830

3046

1049.1

26.4

127.7

94.9

1560

0.0

5.2

152.5

8.9

0.57

LD20

80

7.4

− 64.1

9160

5762

2001.4

33.2

172.9

44.5

3180

1.0

9.7

292.8

0.8

0.32

LD21

86

6.3

− 2.2

16,450

10,712

2566.9

24.2

467.9

484.4

7000

0.0

11.5

128.1

19.8

0.6

LD22

98

6.4

− 6.1

15,300

11,087

2722.1

16.4

337.4

408.9

7425

17.0

6.5

115.9

21.2

0.53

LD23

107

6.8

− 28.6

9880

6560

1301.2

17.9

301.3

312.5

4500

0.0

2.3

103.7

13.9

0.27

LD24

86

7.1

− 44.9

6720

4227

895.2

20.1

235.3

306.4

2660

1.0

4.6

85.4

10.9

0.41

LD25

113

7.1

− 45.7

9270

5664

1746.5

31.6

139.0

195.7

3380

0.0

0.3

152.5

4.8

0.37

LD26

91

9.7

− 155.0

888

495

54.1

3.1

22.4

39.0

176

0.0

0.2

183.0

1.9

0.64

LD27

116

8.6

− 87.3

4410

2668

69.3

12.1

256.3

331.8

1850

11.0

0.6

128.1

1

0.43

 

LD28

104

7.0

− 36.9

9040

5399

1447.0

6.7

189.5

103.1

3490

1.0

0.4

146.4

0.7

0.43

 

LD29

98

7.2

− 49.9

11,930

8397

1815.8

8.0

250.0

274.7

5800

4.0

0.5

225.7

2.66

0.51

 

LD30

92

7.0

− 40.6

14,430

9464

2246.3

6.0

463.7

353.7

6125

87.0

0.3

158.6

0.9

0.23

 

LD31

92

6.7

− 23.8

3540

2289

396.3

5.9

149.7

218.1

1440

9.0

0.4

48.8

6.68

0.57

 

LD32

92

6.6

− 13.7

9370

6002

1481.3

4.9

310.4

544.2

3610

0.0

0.3

42.7

5.19

0.5

 

LD33

92

6.8

− 29.5

8240

5606

1125.3

16.2

366.5

419.1

3600

0.0

0.3

61.0

9.4

0.52

 

LD34

92

7.2

− 47.6

9780

5876

1318.9

17.8

360.4

392.4

3700

0.0

0.3

79.3

4.47

0.41

Secondary data (dry season)

LD35

92

6.9

− 23.3

11,110

7032

1832.3

28.1

367.7

457.7

4260.0

1.0

0.3

73.2

8.8

0.5

RD1

1

8.0

− 64.0

515

318

53.6

4.7

13.8

15.6

75.0

44.5

3.1

97.6

8.78

0.38

RD2

1

8.9

− 112.0

371

226

14.7

3.5

8.8

13.2

28.8

41.3

2.2

97.6

14.21

0.12

RD3

1

7.7

− 148.0

268

220

27.4

3.1

10.8

14.7

18.0

22.5

7.0

109.8

2.90

0.28

RD4

1

7.2

− 64.0

433

291

32.5

3.9

12.2

13.9

90.0

40.7

0.2

85.4

6.30

1.74

RD5

1

8.1

− 76.0

987

557

128.1

6.5

24.9

22.9

205.0

61.5

0.1

97.6

6.66

0.12

Mean

 

7.4

− 54.0

9753

6179

1575.7

33.5

211.5

147.2

3714

106

8.8

240

4.6

0.3

Max

 

9.7

− 2.2

43,300

29,616

8848.4

246.8

1096.8

544.2

19,133.0

1130

131.5

646.6

21.2

1.9

Min

 

5.7

− 155.0

268

220

14.7

1.5

3.7

0.3

18.0

0

0.1

24.4

0.1

0.0

 

SD

 

0.8

33.1

8144

5341

1579.6

47.5

202.8

145.2

3461.2

225

18.5

167.9

5.6

0.4

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarker, M.M.R., Van Camp, M., Islam, M. et al. Hydrochemistry in coastal aquifer of southwest Bangladesh: origin of salinity. Environ Earth Sci 77, 39 (2018). https://doi.org/10.1007/s12665-017-7196-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-7196-2

Keywords

Navigation