Skip to main content
Log in

Comparison of the sensitivity of seven marine and freshwater bioassays as regards antidepressant toxicity assessment

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The hazards linked to pharmaceutical residues like antidepressants are currently a major concern of ecotoxicology because they may have adverse effects on non-target aquatic organisms. Our study assesses the ecotoxicity of three antidepressants (fluoxetine, sertraline and clomipramine) using a battery of marine and freshwater species representing different trophic levels, and compares the bioassay sensitivity levels. We selected the following bioassays: the algal growth inhibition test (Skeletonema marinoi and Pseudokirchneriella subcapitata), the microcrustacean immobilization test (Artemia salina and Daphnia magna), development and adult survival tests on Hydra attenuata, embryotoxicity and metamorphosis tests on Crassostrea gigas, and in vitro assays on primary cultures of Haliotis tuberculata hemocytes. The results showed high inter-species variability in EC50-values ranging from 43 to 15,600 µg/L for fluoxetine, from 67 to 4,400 µg/L for sertraline, and from 4.70 µg/L to more than 100,000 µg/L for clomipramine. Algae (S. marinoi and P. subcapitata) and the embryo–larval stages of the oyster C. gigas were the most sensitive taxa. This raises an issue due to their ecological and/or economic importance. The marine crustacean A. salina was the least sensitive species. This difference in sensitivity between bioassays highlights the importance of using a test battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • AFNOR (2009) Bio indicateur de la toxicité potentielle de milieux aqueux–Détermination de la toxicité potentielle d’échantillons aqueux sur le développement embryo–larvaire de bivalve. XP T90-382

  • Almeida JR, Gravato C, Guilhermino L (2012) Challenges in assessing the toxic effects of polycyclic aromatic hydrocarbons to marine organisms: a case study on the acute toxicity of pyrene to the European seabass (Dicentrarchus labrax L.). Chemosphere 86(9):926–937

    Article  CAS  Google Scholar 

  • Amar E, Balsan D (2004) Les ventes d’antidépresseurs entre 1980 et 2001. Études et résultats, Direction de la Recherche, des Etudes, de l’Evaluation et des Statistiques (DREES) 285:1–8

  • Ankley GT, Brooks BW, Huggett DB, Sumpter JP (2007) Repeating history: pharmaceuticals in the environment. Environ Sci Technol 41:8211–8217

    Article  CAS  Google Scholar 

  • ANSM (2012) Analyse des ventes de médicaments en France en 2011. Agence Nationale de Sécurité du Médicament et des Produits de Santé, 1–21

  • Auffret M, Oubella R (1994) Cytometric parameters of bivalve molluscs: effect of environmental factors. In: Stolen JS, Fletcher TC (eds) Modulators of fish immune responses. Models for environmental toxicology, biomarkers, immunostimulators, vol 1. SOS Publication, Fair Haven

    Google Scholar 

  • Baker SM, Mann R (1994) Feeding ability during settlement and metamorphosis in the oyster Crassostrea virginica (Gmelin, 1791) and the effects of hypoxia on post-settlement ingestion rates. J Exp Mar Biol Ecol 181:239–253

    Article  Google Scholar 

  • Bao VWW, Leung KMY, Lui GCS, Lam MHW (2013) Acute and chronic toxicities of irgarol alone and in combination with copper to the marine copepod Tigriopus japonicus. Chemosphere 90:1140–1148

    Article  CAS  Google Scholar 

  • Beauregard T, Ridal J (2000) Evaluation of six simple bioassays for the determination of drinking water quality-Canadian results. Environ Toxicol 15:304–311

    Article  CAS  Google Scholar 

  • Blair BD, Crago JP, Hedman CJ, Klaper RD (2013) Pharmaceuticals and personal care products found in the Great Lakes above concentrations of environmental concern. Chemosphere 93:2116–2123

    Article  CAS  Google Scholar 

  • Blaise C, Vasseur P (2005) Algal microplate toxicity test. In: Férard J-F, Blaise C (eds) Small-scale freshwater toxicity investigations. Springer, Berlin, pp 137–179

    Chapter  Google Scholar 

  • Brausch JM, Connors KA, Brooks BW, Rand GM (2012) Human pharmaceuticals in the aquatic environment : a review of recent toxicological studies and considerations for toxicity testing. Rev Environ Contam Toxicol 218:1–99

    CAS  Google Scholar 

  • Brooks BW, Foran CM, Richards SM, Weston J, Turner PK, Stanley JK, Solomon KR, Slattery M, La Point TW (2003a) Aquatic ecotoxicology of fluoxetine. Toxicol Lett 142:169–183

    Article  CAS  Google Scholar 

  • Brooks BW, Turner PK, Stanley JK, Weston JJ, Glidewell EA, Foran CM, Slattery M, La Point TW, Huggett DB (2003b) Waterborne and sediment toxicity of fluoxetine to select organisms. Chemosphere 52:135–142

    Article  CAS  Google Scholar 

  • Caveney S, Cladman W, Verellen L, Donly C (2006) Ancestry of neuronal monoamine transporters in the metazoa. J Exp Biol 209(24):4858–4868

    Article  CAS  Google Scholar 

  • Chapman PM, Long ER (1983) The use of bioassays as part of a comprehensive approach to marine pollution assessment. Mar Pollut Bull 14:81–84

    Article  Google Scholar 

  • Chapman PM, Cardwell RS, Chapman PF (1996) A warning: NOECs are inappropriate for regulatory use. Environ Toxicol Chem 15:77–79

    Article  CAS  Google Scholar 

  • Christensen AM, Faaborg-Andersen S, Ingerslev F, Baun A (2007) Mixture and single-substance toxicity of selective serotonin reuptake inhibitors toward algae and crustaceans. Environ Toxicol Chem 26:85–91

    Article  CAS  Google Scholar 

  • Cleuvers M (2003) Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects. Toxicol Lett 142:185–194

    Article  CAS  Google Scholar 

  • Coles JA, Farley SR, Pipe RK (1995) Alteration of the immune response of the common marine mussel Mytilus edulis resulting from exposure to cadmium. Dis Aquat Org 22:59–65

    Article  CAS  Google Scholar 

  • Commission of the European Communities (1996) Technical guidance document in support of commission directive 93/67/EEC on risk assessment for new notified substances and commission regulation (EC) No. 1488/94 on risk assessment for existing substances. Part II: environmental risk assessment. Office for official publications of the European Communities, Luxembourg

  • Coon SL, Bonar DB (1987) Pharmacological evidence that alpha 1-adrenoceptors mediate metamorphosis of the Pacific oyster, Crassostrea gigas. Neuroscience 23:1169–1174

    Article  CAS  Google Scholar 

  • Daughton CG, Ternes TA (1999) Pharmaceutical and personal care products in the environment: agents of subtle change? Environ Health Perspect 107:907–938

    Article  CAS  Google Scholar 

  • De Lange HJ, Noordoven W, Murk AJ, Lürling M, Peeters ETHM (2006) Behavioural responses of Gammarus pulex (crustacea, amphipoda) to low concentrations of pharmaceuticals. Aquat Toxicol 78:209–216

    Article  Google Scholar 

  • Di Poi C, Darmaillacq A-S, Dickel L, Boulouard M, Bellanger C (2013a) Effects of perinatal exposure to waterborne fluoxetine on memory processing in the cuttlefish Sepia officinalis. Aquat Toxicol 132–133:84–91

    Article  Google Scholar 

  • Di Poi C, Evariste L, Serpentini A, Halm-Lemeille M-P, Lebel J-M, Costil K (2013b) Toxicity of five antidepressant drugs on the embryo–larval development in the Pacific oyster, Crassostrea gigas. Environ Sci Pollut Res. doi:10.1007/s11356-013-2211-y

    Google Scholar 

  • Dodson SI, Hanazato T (1995) Commentary on effects of anthropogenic and natural organic chemicals on development, swimming behavior, and reproduction of Daphnia, a key member of aquatic ecosystems. Environ Health Perspect 103(Suppl. 4):7–11

    Article  CAS  Google Scholar 

  • Domart-Coulon I, Auzoux-Bordenave S, Doumenc D, Khalanski M (2000) Cytotoxicity assessment of antibiofouling compounds and by-products in marine bivalve cell cultures. Toxicol In Vitro 14:245–251

    Article  CAS  Google Scholar 

  • Fent K, Weston AA, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquatic Toxicol 76:122–159

    Article  CAS  Google Scholar 

  • Gasquet I, Nègre-Pagès L, Fourrier A, Nachbaur G, El-Hasnaoui A, Kovess V, Lépine J-P (2005) Usage des psychotropes et troubles psychiatriques en France: résultats de l’étude épidémiologique ESEMeD/MHEDEA 2000/(ESEMeD) en population générale. Encéphale 31:195–206

    Article  CAS  Google Scholar 

  • Gaume B, Bourgougnon N, Auzoux-Bordenave S, Roig B, Le Bot B, Bedoux G (2012) In vitro effects of triclosan and methyl-triclosan on the marine gastropod Haliotis tuberculata. Comp Biochem Physiol C 156:87–94

    CAS  Google Scholar 

  • Godhe A, McQuoid R, Karunasagar I, Karunasagar I, Rehnstam-Holm AS (2006) Comparison of three common molecular tools for distinguishing among geographically separated clones of the diatom Skeletonema marinoi Sarno et Zingone (Bacillariophyceae). J Phycol 42:280–291

    Article  CAS  Google Scholar 

  • Gorski J, Nugegoda D (2006) Toxicity of trace metals to juvenile abalone, Haliotis rubra following short-term exposure. B Environ Contam Tox 77:732–740

    Article  CAS  Google Scholar 

  • Hardege JD, Duncan J, Ram JL (1997) Tricyclic antidepressants suppress spawning and fertilization in the zebra mussel, Dreissena polymorpha. Comp Biochem Physiol C 118:59–64

    Article  CAS  Google Scholar 

  • His E, Beiras R, Silhouette C (1997) Research note a simplification the bivalve embryogenesis and larval development bioassay method for water quality assessment. Water Res 31:351–355

    Article  CAS  Google Scholar 

  • His E, Heyvang I, Geffard O et al (1999) A comparison between oyster (Crassostrea gigas) and sea urchin (Paracentrotus lividus) larval bioassays for toxicological studies. Water Res 33:1706–1718

    Article  CAS  Google Scholar 

  • Johnson DJ, Sanderson H, Brain RA, Wilson CJ, Solomon KR (2007) Toxicity and hazard of selective serotonin reuptake inhibitor antidepressants fluoxetine, fluvoxamine, and sertraline to algae. Ecotoxicol Environ Saf 67:128–139

    Article  CAS  Google Scholar 

  • Kümmerer K (2001) Introduction: pharmaceuticals in the environment. In: Kümmerer K (ed) Pharmaceuticals in the environment: source, fate, effects and risks. Springer, Berlin, pp 1–8

    Chapter  Google Scholar 

  • Lebel J-M, Giard W, Favrel P, Boucaud-Camou E (1996) Effects of different vertebrate growth factors on primary cultures of hemocytes from the gastropod mollusc, Haliotis tuberculata. Biol Cell 86:67–72

    Article  CAS  Google Scholar 

  • Li H, Helm PA, Metcalfe CD (2010) Sampling in the Great Lakes for pharmaceuticals, personal care products, and endocrine-disrupting substances using the passive polar organic chemical integrative sampler. Environ Toxicol Chem 4:751–762

    Article  Google Scholar 

  • Lin M-C, Liao C-M (1999) Zn(II) accumulation in the soft tissue and shell of abalone Haliotis diversicolor supertexta via the alga Gracilaria tenuistipitata var. liui and the ambient water. Aquaculture 178:89–101

    Article  CAS  Google Scholar 

  • Mai H, Cachot J, Brune J et al (2012) Embryotoxic and genotoxic effects of heavy metals and pesticides on early life stages of Pacific oyster (Crassostrea gigas). Mar Poll Bull 64:2663–2670

    Article  CAS  Google Scholar 

  • Marchand M, Tissier C (2005) Analyse du risque chimique en milieu marin. L’approche méthodologique européenne. Ed Ifremer, p 126

  • Minagh E, Hernan R, Kathleen OR, Lyng FM, Davoren M (2009) Aquatic ecotoxicity of the selective serotonin reuptake inhibitor sertraline hydrochloride in a battery of freshwater test species. Ecotox Environ Safe 72:434–440

    Article  CAS  Google Scholar 

  • Miner BE, De Meester L, Pfrender ME, Lampert W, Hairston NG Jr (2012) Linking genes to communities and ecosystems: Daphnia as an ecogenomic model. Proc R Soc B. doi:10.1098/rspb.2011.2404

    Google Scholar 

  • Minguez L, Halm-Lemeille M-P, Costil K, Bureau R, Lebel J-M, Serpentini A (2014a) Assessment of cytotoxic and immunomodulatory properties of four antidepressants on primary cultures of abalone hemocytes (Haliotis tuberculata). Aquat Toxicol 153:3–11

    Article  CAS  Google Scholar 

  • Minguez L, Farcy E, Ballandonne C, Lepailleur A, Serpentini A, Lebel J-M, Bureau R, Halm-Lemeille M-P (2014b) Acute toxicity of 8 antidepressants: what are their modes of action? Chemosphere 108:314–319

    Article  CAS  Google Scholar 

  • Mottier A, Kientz-Bouchart V, Serpentini A, Lebel JM, Jha AN, Costil K (2013) Effects of glyphosate-based herbicides on embryo–larval development and metamorphosis in the Pacific oyster, Crassostrea gigas. Aquat Toxicol 128–129:67–78

    Article  Google Scholar 

  • Mottin E, Caplat C, Mahaut M-L, Costil K, Barillier D, Lebel J-M, Serpentini A (2010) Effect of in vitro exposure to zinc on immunological parameters of haemocytes from the marine gastropod Haliotis tuberculata. Fish Shellfish Immunol 29:846–853

    Article  CAS  Google Scholar 

  • Munoz-Bellido JL, Munoz-Criado S, Garcia-Rodriguez JA (2000) Antimicrobial activity of psychotropic drugs selective serotonin reuptake inhibitors. Int J Antimicrob Agents 14:177–180

    Article  CAS  Google Scholar 

  • NF EN ISO 10253 (2006) Qualité de l’eau–Essai d’inhibition de la croissance des algues marines avec Skeletonema costatum et Phaedactylum tricornutum

  • NF EN ISO 6341 (1996) Qualité de l’eau–Détermination de l’inhibition de la mobilité de Daphnia magna Straus (cladocera, crustacea)–Essai de toxicité aigüe

  • NF EN ISO 8692 (2012) Qualité de l’eau–Essai d’inhibition de la croissance des algues d’eau douce avec des algues vertes unicellulaires

  • OECD guidelines for the testing of chemicals N° 201 (2002) freshwater alga and cyanobacteria, growth inhibition test

  • Olié J, Omari FEL, Spadone C, Lépine J (2002) Résultats d’une enquête sur l’usage des antidépresseurs en population générale française. Encéphale 28:411–417

    Google Scholar 

  • Pachura-Bouchet S, Blaise C, Vasseur P (2006) Toxicity of nonylphenol on the cnidarian Hydra attenuata and environmental risk assessment. Environ Toxicol 21(4 Special Issue):388–394

    Article  CAS  Google Scholar 

  • Painter MM, Buerkley MA, Julius ML, Vajda AM, Norris DO, Barber LB, Furlong ET, Schultz MM, Schoenfuss HL (2009) Antidepressants at environmentally relavant concentrations affect predator avoidance behavior of larval fathead minnows (Pimephales promelas). Environ Tox Chem 28:2677–2684

    Article  CAS  Google Scholar 

  • Pascoe D, Karntanut W, Müller CT (2003) Do pharmaceuticals affect freshwater invertebrates? A study with the cnidarian Hydra vulgaris. Chemosphere 51:521–528

    Article  CAS  Google Scholar 

  • Pélissolo A, Boyer P, Lépine JP, Bisserbe JC (1996) Epidemiology of the use of anxiolytic and hypnotic drugs in France and in the world. Encephale 22:187–196

    Google Scholar 

  • Persoone G, Wells PG (1987) Artemia in aquatic toxicology: a review. In: Sorgellos P, Bengtson DA, Decleir W, Jaspers E (eds) Artemia research and its applications. Morphology, genetics, strain characterization, toxicology, vol I. Universa Press, Wetteren

    Google Scholar 

  • Pipe RK, Coles JA (1995) Environmental contaminants influencing immune-function in marine bivalve molluscs. Fish Shellfish Immunol 5:581–595

    Article  Google Scholar 

  • Sánchez-Fortún S, Sanz F, Santa-María A, Ros JM, De Vicente ML, Encinas MT, Vinagre E, Brahona MV (1997) Acute sensitivity of three age classes of Artemia salina larvae to seven chlorinated solvents. Bull Environ Contam Toxicol 59:445–451

    Article  Google Scholar 

  • Santos LHMLM, Araújo AN, Fachini A, Pena A, Delerue-Matos C, Montenegro MCBSM (2010) Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. J Hazard Mater 175:45–95

    Article  CAS  Google Scholar 

  • Sverdrup LE, Fürst CS, Weideborg M, Vik EA, Stenersen J (2002) Relative sensitivity of one freshwater and two marine acute toxicity tests as determined by testing 30 offshore E & P chemicals. Chemosphere 46:311–318

    Article  CAS  Google Scholar 

  • Tatarazako N, Oda S (2007) The water flea Daphnia magna (crustacea, cladocera) as a test species for screening and evaluation of chemicals with endocrine disrupting effects on crustaceans. Ecotoxicology 16:197–203

    Article  CAS  Google Scholar 

  • R Development Core Team (2012) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria, ISBN 3-900051-07-0. http://www.R-project.org/

  • Togola A, Budzinski H (2008) Multu-residue analysis of pharmaceutical compounds in aqueous samples. J Chromatogr A 1177:150–158

    Article  CAS  Google Scholar 

  • Trottier S, Blaise C, Kusui T, Johnson EM (1997) Acute toxicity assessment of aqueous samples using a microplate-based Hydra attenuata assay. Environ Toxicol Water 71:112–265

    Google Scholar 

  • US EPA (2005) Species sentivity distribution generator V1. Freely available from The United States environmental protection agency, http://www.epa.gov/caddis/da_software_ssdmacro.html

  • Vindimian E (2012) MSExcel Macro Regtox 7.06 freely available from Eric Vindimian. IRSTEA, France. http://www.normalesup.org/~vindimian.fr_index.html (Accessed March 2012)

  • Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Statist Assoc 58:236–244

    Article  Google Scholar 

  • Warne M St J, van Dam R (2008) NOEC and LOEC data should no longer be generated or used. Australas J Ecotoxicol 14:1–5

    Google Scholar 

  • Webb SF (2001) A data-based perspective on the environmental risk assessment of human pharmaceuticals I-collation of available ecotoxicity data. In: Kümmerer K (ed) Pharmaceuticals in the environment: Source, fate, effects and risks. Springer, Berlin, pp 317–343

    Google Scholar 

  • Wheeler JR, Grist EPM, Leung KMY, Morritt D, Crane M (2002) Species sensitivity distributions: data and model choice. Mar Pollut Bull 45:192–202

    Article  CAS  Google Scholar 

  • Wilby OK (1988) The Hydra regeneration assay. Proceedings, workshop organized by association Française de teratology, Royaumont, France, 3 Juin, 108–124

Download references

Acknowledgments

This work is a contribution to the Pharm@Ecotox Project funded by the French National Research Agency (ANR, fr: Agence Nationale de la Recherche). The authors thank the technical staff of the Centre de Recherche en Environnement Côtier (Luc-sur-Mer, Basse-Normandie) for their assistance in animal care, and the staff of the SATMAR (Société ATlantique de MARiculture) hatchery (Barfleur, France) for providing pediveliger larvae. We are grateful to Annie Buchwalter for English language editing and we wish to thank the anonymous reviewers for their helpful comments.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laetitia Minguez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minguez, L., Di Poi, C., Farcy, E. et al. Comparison of the sensitivity of seven marine and freshwater bioassays as regards antidepressant toxicity assessment. Ecotoxicology 23, 1744–1754 (2014). https://doi.org/10.1007/s10646-014-1339-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-014-1339-y

Keywords

Navigation