Skip to main content
Log in

Evaluation of FluoroProbe® performance for the phytoplankton-based assessment of the ecological status of Mediterranean coastal lagoons

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The European Water Framework Directive and several other legislations worldwide have selected phytoplankton for monitoring the ecological status of surface waters. This assessment is a complicated task in coastal lagoons due to their intrinsic variability, prompting moves to use real-time measurements. Here, we tested the ability of the submersible spectrofluorometer FluoroProbe® to accurately estimate the phytoplankton biomass and to efficiently discriminate spectral groups in Mediterranean coastal lagoons, by using sub-surface water samples (n = 107) collected at Biguglia lagoon (Corsica) in different environmental situations (salinity and trophic state) from March 2012 to December 2014. We compared the estimates of biomass and phytoplankton group composition obtained with the FluoroProbe® (in situ and lab measurements) with the spectrofluorimetrically measured biomass and HPLC-derived quantifications of pigment concentrations. FluoroProbe® provided good estimates of the total phytoplankton biomass (particularly, the lab measurements). The FluoroProbe® data were significantly correlated with the HPLC results, except for the in situ measurements of very weak concentrations of blue-green and red algae. Our findings indicate that factory-calibrated FluoroProbe® is an efficient and easy-to-use real-time phytoplankton monitoring tool in coastal lagoons, especially as an early warning system for the detection of potentially harmful algal blooms. Practical instructions dedicated to non-specialist field operators are provided. A simple and efficient method for discarding in situ measurement outliers is also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agawin, N. S. R., Duarte, C. M., & Agusti, S. (1998). Growth and abundance of Synechococcus sp. in a Mediterranean Bay: seasonality and relationship with temperature. Marine Ecology Progress Series, 170, 45–53.

    Google Scholar 

  • Álvarez, E., López-Urrutia, Á., Nogueira, E., & Fraga, S. (2011). How to effectively sample the plankton size spectrum? A case study using FlowCAM. Journal of Plankton Research, 33, 1119–1133.

    Google Scholar 

  • Álvarez, E., Moyano, M., López-Urrutia, Á., Nogueira, E., & Scharek, R. (2014). Routine determination of plankton community composition and size structure: a comparison between FlowCAM and light microscopy. Journal of Plankton Research, 36(1), 170–184.

    Google Scholar 

  • Aminot, A., & Kérouel, R. (2007). Dosage automatique des nutriments dans les eaux marines: Méthodes en flux continu. Paris: IFREMER.

    Google Scholar 

  • Armi, Z., Trabelsi, E., Turki, S., Béjaoui, B., & Ben-Maïz, N. (2010). Seasonal phytoplankton responses to environmental factors in a shallow Mediterranean lagoon. Journal of Marine Science and Technology, 15, 417–426.

    Google Scholar 

  • Ayadi, H., Abid, O., Elloumi, J., Nouai, A., & Sime-Ngando, T. (2004). Structure of the phytoplankton communities in two lagoons of different salinity in the Sfax saltern (Tunisia). Journal of Plankton Research, 26(6), 669–679.

    Google Scholar 

  • Bec, B., Husseini-Ratrema, J., Collos, Y., Souchu, P., & Vaquer, A. (2005). Phytoplankton seasonal dynamics in a Mediterranean coastal lagoon: emphasis on the picoeukaryote community. Journal of Plankton Research, 27(9), 881–894.

    CAS  Google Scholar 

  • Bec, B., Collos, Y., Souchu, P., Vaquer, A., Lautier, J., Fiandrino, A., Benau, L., Orsoni, V., & Laugier, T. (2011). Distribution of picophytoplankton and nanophytoplankton along an anthropogenic eutrophication gradient in French Mediterranean coastal lagoons. Aquatic Microbial Ecology, 63, 29–45.

    Google Scholar 

  • Bel-Hassen, M., Hamza, A., Drira, Z., Zouari, A., Akrout, F., Messaoudi, S., Aleya, L., & Ayadi, H. (2009). Phytoplankton-pigment signatures and their relationship to spring–summer stratification in the Gulf of Gabes. Estuarine, Coastal and Shelf Science, 83, 296–306.

    Google Scholar 

  • Beutler, M., Wilshire, K. H., Meyer, B., Moldaenke, C., Lüring, C., Meyerhöfer, M., Hansen, H. P., & Dau, H. (2002). A fluorometric method for the differentiation of algal populations in vivo and in situ. Photosynthesis Research, 72, 39–53.

    CAS  Google Scholar 

  • Blottière, L., Jaffar-Bandjee, M., Jacquet, S., Millot, A., & Hulot, F. D. (2017). Effects of mixing on the pelagic food web in shallow lakes. Freshwater Biology, 62, 161–177.

    Google Scholar 

  • Bradie, J., Broeg, K., Gianoli, C., He, J., Heitmüller, S., Lo Curto, A., Nakata, A., Rolke, M., Schillak, L., Stehouwer, P., Vanden Byllaardt, J., Veldhuis, M., Welschmeyer, N., Younan, L., Zaake, A., & Bailey, S. (2018). A shipboard comparison of analytic methods for ballast water compliance monitoring. Journal of Sea Research, 133, 11–19.

    Google Scholar 

  • Carić, M., Jasprica, N., Čalić, M., & Batistić, M. (2011). Phytoplankton response to high salinity and nutrient limitation in the eastern Adriatic marine lakes. Sciencia Marina, 75(3), 493–505.

    Google Scholar 

  • Catherine, A., Escoffier, N., Belhocine, A., Nasri, A. B., Hamlaoui, S., Yéprémian, C., Bernard, C., & Troussellier, M. (2012). On the use of the FluoroProbe®, a phytoplankton quantification method based on fluorescence excitation spectra for large-scale surveys of lakes and reservoirs. Water Research, 46(6), 1771–1784.

    CAS  Google Scholar 

  • Catherine, A., Selma, M., Mouillot, D., Troussellier, M., & Bernard, C. (2016). Patterns and multi-scale drivers of phytoplankton species richness in temperate peri-urban lakes. Science of the Total Environment, 559, 74–83.

    CAS  Google Scholar 

  • Cecchi, P., Garrido, M., Collos, Y., & Pasqualini, V. (2016). Water flux management and phytoplankton communities in a Mediterranean coastal lagoon. Part II: mixotrophy of dinoflagellates as an adaptive strategy? Marine Pollution Bulletin, 108, 120–133.

    CAS  Google Scholar 

  • CEN EN 15204. (2006). Water quality – Guidance standard on the enumeration of phytoplankton using inverted microscope (Utermöhl Technique). Brussels: European Committee for Standardization.

    Google Scholar 

  • Chomérat, N., Garnier, R., Bertrand, C., & Cazaubon, A. (2007). Seasonal succession of cyanoprokaryotes in a hypereutrophic oligo-mesohaline lagoon from the south of France. Estuarine, Coastal and Shelf Science, 72, 591–602.

    Google Scholar 

  • Chorus, I., & Bartram, J. (1999). Toxic cyanobacteria in water. A guide to their public health consequences, monitoring and management. Rome: World Health Organization.

    Google Scholar 

  • Collos, Y., Gagne, C., Laabir, M., Vaquer, A., Cecchi, P., & Souchu, P. (2004). Nitrogenous nutrition of Alexandrium catenella (Dinophyceae) in cultures and in Thau lagoon, southern France. Journal of Phycology, 40, 96–103.

    CAS  Google Scholar 

  • Cyr, H. (2017). Winds and the distribution of nearshore phytoplankton in a stratified lake. Water Research, 122, 114–127.

    CAS  Google Scholar 

  • Derolez, V., Bec, B., Munaron, D., Fiandrino, A., Pete, R., Simier, M., Souchu, P., Laugier, T., Aliaume, C., & Malet, N. (2019). Recovery trajectories following the reduction of urban nutrient inputs along the eutrophication gradient in French Mediterranean lagoons. Ocean and Coastal Management, 171, 1–10.

    Google Scholar 

  • Echenique-Subiabre, I., Dalle, C., Duval, C., Heath, M. W., Couté, A., Wood, S. A., Humbert, J. F., & Quiblier, C. (2016). Application of a spectrofluorimetric tool (bbe BenthoTorch) for monitoring potentially toxic benthic cyanobacteria in rivers. Water Research, 101, 341–350.

    CAS  Google Scholar 

  • Eckford-Soper, L., Daugbjerg, N., Nørremark, L., & Engell-Sørensen, K. (2018). Comparison by light microscopy and qPCR of potentially ichthyotoxic microalgae in Danish on-shore lagoons producing European flounder (Platichthys flesus): pros and cons of microscopical and molecular methods. Harmful Algae News, 59, 24–27.

    Google Scholar 

  • Escoffier, N., Bernard, C., Hamlaoui, S., Groleau, A., & Catherine, A. (2015). Quantifying phytoplankton communities using spectral fluorescence: the effects of species composition and physiological state. Journal of Plankton Research, 37(1), 233–247.

    CAS  Google Scholar 

  • Flo, E., Garcés, E., Manzanera, M., & Camp, J. (2011). Coastal inshore waters in the NW Mediterranean: physicochemical and biological characterization and management implications. Estuarine Coastal and Shelf Science, 93, 279–289.

    CAS  Google Scholar 

  • Garrido, M., Cecchi, P., Vaquer, A., & Pasqualini, V. (2013). Effects of samples conservation on photosynthetic efficiency assessment of phytoplankton using PAM fluorometry. Deep Sea Research, Part I, 71, 38–48.

    CAS  Google Scholar 

  • Garrido, M., Cecchi, P., Collos, Y., Agostini, S., & Pasqualini, V. (2016). Water flux management and phytoplankton communities in a Mediterranean coastal lagoon. Part I: how to promote dinoflagellate dominance? Marine Pollution Bulletin, 104, 139–152.

    CAS  Google Scholar 

  • Giling, D. P., Nejstgaard, J. C., Berger, S. A., Grossart, H.-P., Kirillin, G., Penske, A., Lentz, M., Casper, P., Sareyka, J., & Gessner, M. O. (2017). Thermocline deepening boosts ecosystem metabolism: evidence from a large-scale lake enclosure experiment simulating a summer storm. Global Change Biology, 23, 1448–1462.

    Google Scholar 

  • Giovanardi, F., Francé, J., Mozetič, P., & Precali, R. (2018). Development of ecological classification criteria for the biological quality element phytoplankton for Adriatic and Tyrrhenian coastal waters by means of chlorophyll a (2000/60/EC WFD). Ecological Indicators, 93, 316–332.

    Google Scholar 

  • Glibert, P. M. (2017). Eutrophication, harmful algae and biodiversity – challenging paradigms in a world of complex nutrient changes. Marine Pollution Bulletin, 124(2), 591–606.

    CAS  Google Scholar 

  • Glibert, P. M., & Burford, M. A. (2017). Globally changing nutrient loads and harmful algal blooms: recent advances, new paradigms, and continuing challenges. Oceanography, 30(1), 58–69.

    Google Scholar 

  • Gordon, N., Perissinotto, R., & Miranda, N. A. F. (2016). Microalgal dynamics in a shallow estuarine lake: transition from drought to wet conditions. Limnologica, 60, 20–30.

    Google Scholar 

  • Gregor, J., & Maršálek, B. (2004). Freshwater phytoplankton quantification by chlorophyll a: a comparative study of in vitro, in vivo and in situ methods. Water Research, 38, 517–522.

    CAS  Google Scholar 

  • Gregor, J., Geriš, R., Maršálek, B., Heteša, J., & Marvan, P. (2005). In situ quantification of phytoplankton in reservoirs using a submersible spectrofluorometer. Hydrobiologia, 548(1), 141–151.

    Google Scholar 

  • Grzebyk, D., Audic, S., Lasserre, B., Abadie, E., de Vargas, C., & Bec, B. (2017). Insights into the harmful algal flora in northwestern Mediterranean coastal lagoons revealed by pyrosequencing metabarcodes of the 28S rRNA gene. Harmful Algae, 68, 1–16.

    CAS  Google Scholar 

  • Harrison, J. W., Howell, E. T., Watson, S. B., & Smith, R. E. H. (2016). Improved estimates of phytoplankton community composition based on in situ spectral fluorescence: use of ordination and field-derived norm spectra for the bbe FluoroProbe. Canadian Journal of Fisheries and Aquatic Sciences, 73, 1472–1482.

    Google Scholar 

  • Havskum, H., Schlüter, L., Scharek, R., Berdalet, E., & Jacquet, S. (2004). Routine quantification of phytoplankton groups – microscopy or pigment analyses? Marine Ecology Progress Series, 273, 31–42.

    CAS  Google Scholar 

  • Heisler, J., Glibert, P. M., Burkholder, J. M., Anderson, D. M., Cochlan, W., Dennison, W. C., Dortch, Q., Gobler, C. J., Heil, C. A., Humphries, E., Lewitus, A., Magnien, R., Marshallm, H. G., Sellner, K., Stockwell, D. A., Stoecker, D. K., & Suddleson, M. (2008). Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae, 8, 3–13.

    CAS  Google Scholar 

  • Hering, D., Borja, A., Jones, J. I., Pont, D., Boets, P., Bouchez, A., Bruce, K., Drakare, S., Hänfling, B., Kahlert, M., Leese, F., Meissner, K., Mergen, P., Reyjol, Y., Segurado, P., Vogler, A., & Kelly, M. (2018). Implementation options for DNA-based identification into ecological status assessment under the European water framework directive. Water Research, 138, 192–205.

    CAS  Google Scholar 

  • Holmes, R. M., Aminot, A., Kérouel, R., Hooker, B. A., & Peterson, B. J. (1999). A simple and precise method of measuring ammonium in marine and freshwater ecosystems. Canadian Journal of Fisheries and Aquatic Sciences, 56, 1801–1808.

    CAS  Google Scholar 

  • Houliez, E., Lizon, F., Thyssen, M., Artigas, F. L., & Schmitt, F. G. (2012). Spectral fluorometric characterization of haptophyte dynamics using the FluoroProbe: an application in the eastern English Channel for monitoring Phaeocystis globosa. Journal of Plankton Research, 34(2), 136–151.

    Google Scholar 

  • Houliez, E., Lefebvre, S., Lizon, F., & Schmitt, F. G. (2017). Rapid light curves (RLC) or non-sequential steady-state light curves (N-SSLC): which fluorescence-based light response curve methodology robustly characterizes phytoplankton photosynthetic activity and acclimation status? Marine Biology, 164, 175.

    Google Scholar 

  • Jacquet, S., Lennon, J. F., Marie, D., & Vaulot, D. (1998). Picoplankton population dynamics in coastal waters of the northwestern Mediterranean Sea. Limnology and Oceanography, 43(8), 1916–1931.

    CAS  Google Scholar 

  • Johnsen, G., & Sakshaug, E. (2007). Biooptical characteristics of PSII and PSI in 33 species (13 pigment groups) of marine phytoplankton, and the relevance for pulse-amplitude-modulated and fast-repetition-rate fluorometry. Journal of Phycology, 43(6), 1236–1251.

    CAS  Google Scholar 

  • Justic, D., Rabalais, N. N., & Turner, R. E. (1995). Stoichiometric nutrient balance and origin of coastal eutrophication. Marine Pollution Bulletin, 30, 41–46.

    CAS  Google Scholar 

  • Karpowicz, M., & Ejsmont-Karabin, J. (2017). Effect of metalimnetic gradient on phytoplankton and zooplankton (Rotifera, Crustacea) communities in different trophic conditions. Environmental Monitoring and Assessment, 189, 367.

    Google Scholar 

  • Kirk, J. T. O. (2011). Light and photosynthesis in aquatic ecosystems (3rd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Kring, S. A., Figary, S. E., Boyer, G. L., Watson, S. B., & Twiss, M. R. (2014). Rapid in situ measures of phytoplankton communities using the bbe FluoroProbe: evaluation of spectral calibration, instrument intercompatibility, and performance range. Canadian Journal of Fisheries and Aquatic Sciences, 71, 1087–1095.

    Google Scholar 

  • Lawrenz, E., Pinckney, J. L., Ranhofer, M. L., MacIntyre, H. L., & Richardson, T. L. (2010). Spectral irradiance and phytoplankton community composition in a Blackwater-dominated estuary, Winyah Bay, South Carolina, USA. Estuaries and Coasts, 33, 1186–1201.

    CAS  Google Scholar 

  • Le Fur, I., De Wit, R., Plus, M., Oheix, J., Simier, M., & Ouisse, V. (2018). Submerged benthic macrophytes in Mediterranean lagoons: distribution patterns in relation to water chemistry and depth. Hydrobiologia, 808, 175–200.

    Google Scholar 

  • Leboulanger, C., Dorigo, U., Jacquet, S., Le Berre, B., Paolini, G., & Humbert, J. F. (2002). Application of a submersible spectrofluorometer for rapid monitoring of freshwater cyanobacterial blooms: a case study. Aquatic Microbial Ecology, 30, 83–89.

    Google Scholar 

  • Leruste, A., Hatey, E., Bec, B., & De Wit, R. (2015). Selecting an HPLC method for chemotaxonomic analysis of phytoplankton community in Mediterranean coastal lagoons. Transitional Waters Bulletin, 9(1), 20–41.

    Google Scholar 

  • Leruste, A., Malet, N., Munaron, D., Derolez, V., Hatey, E., Collos, Y., De Wit, R., & Bec, B. (2016). First steps of ecological restoration in Mediterranean lagoons: shifts in phytoplankton communities. Estuarine, Coastal and Shelf Science, 180, 190–203.

    CAS  Google Scholar 

  • Leruste, A., Pasqualini, V., Garrido, M., Malet, N., De Wit, R., & Bec, B. (2019). Physiological and behavioral responses of phytoplankton communities to nutrient availability in a disturbed Mediterranean coastal lagoon. Estuarine, Coastal and Shelf Science, 219, 176–188.

    CAS  Google Scholar 

  • Liu, X., Huang, B., Liu, Z., Wang, L., Wei, H., Li, C., & Huang, Q. (2012). High-resolution phytoplankton diel variations in the summer stratified Central Yellow Sea. Journal of Oceanography, 68, 913–927.

    CAS  Google Scholar 

  • MacIntyre, H. L., Lawrenz, E., & Richardson, T. L. (2010). Taxonomic discrimination of phytoplankton by spectral fluorescence. In D. J. Suggett et al. (Eds.), Chlorophyll a fluorescence in aquatic sciences: methods and applications. Developments in applied phycology 4 (pp. 129–169). New York: Springer Science.

    Google Scholar 

  • Maloufi, S., Catherine, A., Mouillot, D., Louvard, C., Couté, A., Bernard, C., & Troussellier, M. (2016). Environmental heterogeneity among lakes promotes hyper β-diversity across phytoplankton communities. Freshwater Biology, 61, 633–645.

    Google Scholar 

  • Marie, D., Partensky, F., Jacquet, S., & Vaulot, D. (1997). Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR green-I. Applied and Environmental Microbiology, 93, 186–193.

    Google Scholar 

  • Marty, J. C., Garcia, N., & Raimbault, P. (2008). Phytoplankton dynamics and primary production under late summer conditions in the NW Mediterranean Sea. Deep Sea Research, Part I, 55, 1131–1149.

    Google Scholar 

  • Morgan-Kiss, R. M., Lizotte, M. P., Kong, W., & Priscu, J. C. (2016). Photoadaptation to the polar night by phytoplankton in a permanently ice-covered Antarctic lake. Limnology and Oceanography, 61, 3–13.

    CAS  Google Scholar 

  • Neveux, J., & Lantoine, F. (1993). Spectrofluorometric assay of chlorophylls and phaeopigments using the least squares approximation technique. Deep Sea Research, 40, 1747–1765.

    CAS  Google Scholar 

  • Nixon, S. W. (1995). Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia, 41, 199–219.

    Google Scholar 

  • Ostrowska, M., Stoń-Egiert, J., & Woźniak, B. (2015). Modified methods for defining the chlorophyll concentration in the sea using submersible fluorimeters – Theoretical and quantitative analysis. Continental Shelf Research, 109, 46–54.

    Google Scholar 

  • Pasqualini, V., Derolez, V., Garrido, M., Orsoni, V., Baldi, Y., Etourneau, S., Leoni, V., Laugier, T., Souchu, P., & Malet, N. (2017). Spatiotemporal dynamics of submerged macrophyte status and watershed exploitation in a Mediterranean coastal lagoon: understanding critical factors in ecosystem degradation and restoration. Ecological Engineering, 102, 1–14.

    Google Scholar 

  • Patidar, S. K., Chokshi, K., George, B., Bhattacharya, S., & Mishra, S. (2015). Dominance of cyanobacterial and cryptophytic assemblage correlated to CDOM at heavy metal contamination sites of Gujarat, India. Environmental Monitoring and Assessment, 187, 4118.

    Google Scholar 

  • Platt, T., & Denman, K. (1980). Patchiness in phytoplankton distribution. In I. Morris (Ed.), The ecology of phytoplankton (pp. 413–431). Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • Poxleitner, M., Trommer, G., Lorrenz, P., & Stibor, H. (2016). The effect of increased nitrogen load on phytoplankton in a phosphorus-limited lake. Freshwater Biology, 61, 1966–1980.

    CAS  Google Scholar 

  • Pulina, S., Padedda, B. M., Sechi, N., & Lugliè, A. (2011). The dominance of cyanobacteria in Mediterranean hypereutrophic lagoons: a case study of Cabras lagoon (Sardinia, Italy). Scientia Marina, 75(1), 111–120.

    Google Scholar 

  • R Core Team. (2015). A language and environment for statistical computing. In R Foundation for statistical computing. Vienna: URL http://www.R-project.org/.

  • Raimbault, P., Pouvesle, W., Diaz, F., Garcia, N., & Sempere, R. (1999). Wet-oxidation and automated colorimetry for simultaneous determination of organic carbon, nitrogen and phosphorus dissolved in seawater. Marine Chemistry, 66, 161–169.

    CAS  Google Scholar 

  • Richardson, T. L., Lawrenz, E., Pinckney, J. L., Guajardo, R. C., Walker, E. A., Paerl, H. W., & MacIntyre, H. L. (2010). Spectral fluorometric characterization of phytoplankton community composition using the algae online Analyser. Water Research, 44, 2461–2472.

    CAS  Google Scholar 

  • Rivera, S. F., Vasselon, V., Jacquet, S., Bouchez, A., Ariztegui, D., & Rimet, F. (2018). Metabarcoding of lake benthic diatoms: From structure assemblages to ecological assessment. Hydrobiologia, 807, 37–51.

    Google Scholar 

  • Rolland, A., Rimet, F., & Jacquet, S. (2010). A 2-year survey of phytoplankton in the Marne reservoir (France): a case study to validate the use of an in situ spectrofluorometer by comparison with algal taxonomy and chlorophyll a measurements. Knowledge and Management of Aquatic Ecosystems, 398, 02.

    Google Scholar 

  • Romero-Martínez, L., Van Slooten, C., Nebot, E., Acevedo-Merino, A., & Peperzak, L. (2017). Assessment of imaging-in-flow system (FlowCAM) for systematic ballast water management. Science of the Total Environment, 603–604, 550–561.

    Google Scholar 

  • Roy, S., Llewellyn, C., Egeland, E. S., & Johnsen, G. (2011). Phytoplankton pigments: Characterization, chemotaxonomy and applications in oceanography. Cambridge: Cambridge University Press.

    Google Scholar 

  • Schlüter, L., Møhlenberg, F., & Kaas, H. (2014). Temporal and spatial variability of phytoplankton monitored by a combination of monitoring buoys, pigment analysis and fast screening microscopy in the Fehmarn Belt estuary. Environmental Monitoring and Assessment, 186, 5167–5184.

    Google Scholar 

  • See, J. H., Campbell, L., Richardson, T. L., Pinckney, J. L., Shen, R., & Guinasso, N. L., Jr. (2005). Combining new technologies for determination of phytoplankton community structure in the northern Gulf of Mexico. Journal of Phycology, 41, 305–310.

    Google Scholar 

  • Silva, T., Giani, A., Figueredo, C., Viana, P., Khac, V. T., Lemaire, B. J., Tassin, B., Nascimento, N., & Vinçon-Leite, B. (2016). Comparison of cyanobacteria monitoring methods in a tropical reservoir by in vivo and in situ spectrofluorometry. Ecological Engineering, 97, 79–87.

    Google Scholar 

  • Smayda, T. J. (2008). Complexity in the eutrophication-harmful algal bloom relationship, with comment on the importance of grazing. Harmful Algae, 8, 140–151.

    CAS  Google Scholar 

  • Souchu, P., Bec, B., Smith, V. H., Laugier, T., Fiandrino, A., Benau, L., Orsoni, V., Collos, Y., & Vaquer, A. (2010). Patterns in nutrient limitation and chlorophyll a along an anthropogenic eutrophication gradient in French Mediterranean coastal lagoons. Canadian Journal of Fisheries and Aquatic Sciences, 67, 743–753.

    CAS  Google Scholar 

  • Spatharis, S., Tsirtsis, G., Danielidis, D., Do Chi, T., & Mouillot, D. (2007). Effects of pulsed nutrient inputs on phytoplankton assemblage structure and blooms in an enclosed coastal area. Estuarine, Coastal and Shelf Science, 73, 807–815.

    Google Scholar 

  • Švanys, A., Paškauskas, R., & Hilt, S. (2014). Effects of the allelopathically active macrophyte Myriophyllum spicatum on a natural phytoplankton community: a mesocosm study. Hydrobiologia, 737, 57–66.

    Google Scholar 

  • Teufel, A. G., Li, W., Kiss, A. J., & Morgan-Kiss, R. M. (2017). Impact of nitrogen and phosphorus on phytoplankton production and bacterial community structure in two stratified Antarctic lakes: a bioassay approach. Polar Biology, 40, 1007–1022.

    Google Scholar 

  • Therriault, J. C., & Platt, T. (1981). Environmental control of phytoplankton patchiness. Canadian Journal of Fisheries and Aquatic Sciences, 38(6), 638–641.

    Google Scholar 

  • Twiss, M. R. (2011). Variations in chromophoric dissolved organic matter and its influence on the use of pigment-specific fluorimeters in the Great Lakes. Journal of Great Lakes Research, 37(1), 124–131.

    CAS  Google Scholar 

  • Utermöhl, H. (1958). Zur Vervollkommnung der quantitativen phytoplankton-Methodik. Mitteilungen der Internationale Vereinigung für theoretische und angewandte Limnologie, 9, 1–38.

    Google Scholar 

  • Van Beusekom, J. E. E., Mengedoht, D., Augustin, C. B., Schilling, M., & Boersma, M. (2009). Phytoplankton, protozooplankton and nutrient dynamics in the Bornholm Basin (Baltic Sea) in 2002–2003 during the German GLOBEC project. International Journal of Earth Sciences, 98, 251–260.

    Google Scholar 

  • Vidussi, F., Claustre, H., Manca, B. B., Luchetta, A., & Marty, J. C. (2001). Phytoplankton pigment distribution in relation to upper thermocline circulation in the eastern Mediterranean Sea during winter. Journal of Geophysical Research, 106, 19939–19956.

    Google Scholar 

  • Viličić, D., Legović, T., & Žutić, V. (1989). Vertical distribution of phytoplankton in a stratified estuary. Aquatic Sciences, 51(1), 31–46.

    Google Scholar 

  • Vuorio, K., Lepistö, L., & Holopainen, A. L. (2007). Intercalibrations of freshwater phytoplankton analyses. Boreal Environment Research, 12, 561–569.

    Google Scholar 

  • Wang, Y. K., Chen, P. Y., Dahms, H. U., Yeh, S. L., & Chiu, Y. J. (2016). Comparing methods for measuring phytoplankton biomass in aquaculture ponds. Aquaculture Environment Interactions, 8, 665–673.

    Google Scholar 

  • Wright, S. W., & Jeffrey, S. W. (1997). High-resolution HPLC system for chlorophylls and carotenoids of marine phytoplankton. In S. W. Jeffrey, R. F. C. Mantoura, & S. W. Wright (Eds.), Phytoplankton pigments in oceanography: Guidelines to modern methods (pp. 327–360). Paris: UNESCO.

    Google Scholar 

  • Zamyadi, A., Choo, F., Newcombe, G., Stuetz, R., & Henderson, R. K. (2016). A review of monitoring technologies for real-time management of cyanobacteria: Recent advances and future direction. Trends in Analytical Chemistry, 85, 83–96.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the two anonymous reviewers for their constructive comments that improved our manuscript.

Funding

This study was supported by funding from the French Government and from the Corsican Regional Council. MG was awarded a grant from the Collectivité Territoriale de Corse and the Université de Corse.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Cecchi.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garrido, M., Cecchi, P., Malet, N. et al. Evaluation of FluoroProbe® performance for the phytoplankton-based assessment of the ecological status of Mediterranean coastal lagoons. Environ Monit Assess 191, 204 (2019). https://doi.org/10.1007/s10661-019-7349-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7349-8

Keywords

Navigation