Skip to main content
Log in

Feedback Mechanisms Between Cyanobacterial Blooms, Transient Hypoxia, and Benthic Phosphorus Regeneration in Shallow Coastal Environments

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

We investigated the dissolved oxygen metabolism of the Curonian Lagoon (Baltic Sea) to assess the relative contributions of pelagic and benthic processes to the development of transient hypoxic conditions in shallow water habitats. Metabolism measurements along with the remote sensing-derived estimates of spatial variability in chlorophyll a were used to evaluate the risk of hypoxia at the whole lagoon level. Our data demonstrate that cyanobacterial blooms strongly inhibit light penetration, resulting in net heterotrophic conditions in which pelagic oxygen demand exceeds benthic oxygen demand by an order of magnitude. The combination of bloom conditions and reduced vertical mixing during calm periods resulted in oxygen depletion of bottom waters and greater sediment nutrient release. The peak of reactive P regeneration (nearly 30 μmol m−2 h−1) coincided with oxygen depletion in the water column, and resulted in a marked drop of the inorganic N:P ratio (from >40 to <5, as molar). Our results suggest a strong link between cyanobacterial blooms, pelagic respiration, hypoxia, and P regeneration, which acts as a feedback in sustaining algal blooms through internal nutrient cycling. Meteorological data and satellite-derived maps of chlorophyll a were used to show that nearly 70 % of the lagoon surface (approximately 1,000 km2) is prone to transient hypoxia development when blooms coincide with low wind speed conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Almroth, E., A. Tengberg, J.H. Andersson, S. Pakhomova, and P.O.J. Hall. 2009. Effects of resuspension on benthic fluxes of oxygen, nutrients, dissolved inorganic carbon, iron, and manganese in the Gulf of Finland, Baltic Sea. Continental Shelf Research 29: 807–818.

    Article  Google Scholar 

  • Bailey, S.W., and P.J. Werdell. 2006. A multisensor approach for the on-orbit validation of ocean color satellite data products. Remote Sensing of Environment 102: 12–23.

    Article  Google Scholar 

  • Bresciani, M., C. Giardino, D. Stroppiana, R. Pilkaitytė, M. Zilius, M. Bartoli, and A. Razinkovas. 2012. Retrospective analysis of spatial and temporal variability of chlorophyll-a in the Curonian Lagoon. Journal of Coastal Conservation 16: 511–519.

    Article  Google Scholar 

  • Caffrey, J.M. 2004. Factors controlling net ecosystem metabolism in US estuaries. Estuaries 27(1): 90–101.

    Article  CAS  Google Scholar 

  • Candiani, G., D. Floricioiu, C. Giardino, and H. Rott. 2005. Monitoring water quality of the perialpine Italian lake Garda through Multitemporal MERIS data. MERIS/(A)ATSR User Workshop. 26–30, ESA SP-597, CD-ROM.

  • Carstensen, J., P. Henriksen, and A.-S. Heiskanen. 2007. Summer algal blooms in shallow estuaries: definition, mechanisms, and link to eutrophication. Limnology and Oceanography 52(1): 370–384.

    Article  CAS  Google Scholar 

  • Chen, C.-C., G.-C. Gong, and F.-K. Shiah. 2007. Hypoxia in the East China Sea: one of the largest coastal low-oxygen areas in the world. Marine Environmental Research 64(4): 399–408.

    Article  CAS  Google Scholar 

  • Cloern, J.E. 2001. Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series 210: 223–253.

    Article  CAS  Google Scholar 

  • Conley, D.J., and T.C. Malone. 1992. Annual cycle of dissolved silicate in Chesapeake Bay: implications for the production and fate of phytoplankton biomass. Marine Ecology Progress Series 81: 121–128.

    Article  CAS  Google Scholar 

  • Conley, D.J., H. Kaas, F. Møhlenberg, B. Rasmussen, and J. Windolf. 2000. Characteristics of Danish Estuaries. Estuaries 23(6): 820–837.

    Article  CAS  Google Scholar 

  • Conley, D.J., J. Carstensen, G. Ærtebjerg, P.B. Christensen, T. Dalsgaard, J.L.S. Hansen, and A.B.. Josefson. 2007. Long-term changes and impacts of hypoxia in Danish coastal waters. Ecological Applications 17(5): 165–184.

    Google Scholar 

  • Conley, D.J., S. Björck, E. Bonsdorff, J. Carstensen, G. Destouni, B.G. Gustafsson, S. Hietanen, M. Kortekaas, H. Kuosa, M.H.E. Meier, B. Müller-Karulis, K. Nordberg, A. Norko, G. Nürnberg, H. Pitkänen, N.N. Rabalais, R. Rosenberg, O.P. Savchuk, C. Slomp, M. Voss, F. Wulff, and L. Zillén. 2009. Hypoxia-related processes in the Baltic Sea. Environmental Science and Technology 43(10): 3412–3420.

    Article  CAS  Google Scholar 

  • Conley, D.J., J. Carstensen, J. Aigars, P. Axe, E. Bonsdorff, T. Eremina, B. Haahti, C. Humborg, P. Jonsson, J. Kotta, C. Lannegren, U. Larsson, A. Maximov, M. Medina, E. Lysiak-Pastuszak, N. Remeikaite-Nikiene, J. Walve, S. Wilhelms, and L. Zillén. 2011. Hypoxia is increasing in the coastal zone of the Baltic Sea. Environmental Science and Technology 45: 6777–6783.

    Article  CAS  Google Scholar 

  • D’Avanzo, C., and J.N. Kremer. 1994. Diel oxygen dynamics and anoxia events in an eutrophic estuary of Waquoit Bay, Massachusetts. Estuaries 17(18): 131–139.

    Article  Google Scholar 

  • Dalsgaard, T., L.P. Nielsen, V. Brotas, P. Viaroli, G. Underwood, D. Nedwell, K. Sundbäck, S. Rysgaard, A. Miles, M. Bartoli, L. Dong, D.C.O. Thornton, L.D.M. Otossen, G. Castaldelli, and N. Risgaard-Petersen. 2000. Protocol handbook for NICE—Nitrogen Cycling In Estuaries: A project under the EU research program: Marine Science and Technology (MAST III). Silkeborg: National Environmental Research Institute.

    Google Scholar 

  • Daunys, D. 2001. Patterns of the bottom macrofauna variability and its role in the shallow coastal Lagoon. Summary of Doctoral Dissertation. Klaipėda: Klaipėda University.

    Google Scholar 

  • Diaz, R.J. 2001. Overview of hypoxia around the world. Journal of Environmental Quality 30: 275–281.

    Article  CAS  Google Scholar 

  • Diaz, R.J., and R. Rosenberg. 1995. Marine benthic hypoxia: a review of its ecological effects and the behavioral responses of benthic macrofauna. Oceanography and Marine Biology. Annual Review 33: 245–303.

    Google Scholar 

  • Ferrarin, C., A. Razinkovas, S. Gulbinskas, G. Umgiesser, and L. Bliūdžiutė. 2008. Hydraulic regime-based zonation scheme of the Curonian Lagoon. Hydrobiologia 611(1): 133–146.

    Article  Google Scholar 

  • Fomferra, N., and C. Brockmann. 2006. The BEAM Project. Hamburg, Germany: Carsten Brockmann Consult.

    Google Scholar 

  • Fulweiler, R.W., S.W. Nixon, and B.A. Buckley. 2010. Spatial and temporal variability of benthic oxygen demand and nutrient regeneration in an anthropogenically impacted New England Estuary. Estuaries and Coasts 33: 1377–1390.

    Article  CAS  Google Scholar 

  • Giardino, C., M. Bresciani, R. Pilkaityte, M. Bartoli, and A. Razinkovas. 2010. In situ measurements and satellite remote sensing of case 2 waters: first results from the Curonian Lagoon. Oceanologia 52(2): 197–210.

    Article  Google Scholar 

  • Giordano, J.C.P., M.J. Brush, and I.C. Anderson. 2012. Ecosystem metabolism in shallow coastal lagoons: patterns and partitioning of planktonic, benthic, and integrated community rates. Marine Ecology Progress Series 458: 21–38. doi:10.3354/meps09719.

    Article  CAS  Google Scholar 

  • Gitelson, A.A., J.F. Schalles, and C.M. Hladik. 2007. Remote chlorophyll-a retrieval in turbid, productive estuaries: Chesapeake Bay case study. Remote Sensing of Environment 109: 464–472.

    Article  Google Scholar 

  • Grasshoff, K., M. Ehrhardt, and K. Kremling. 1983. Methods of Seawater Analysis, 2nd ed. Berlin: Verlag Chemie.

    Google Scholar 

  • Hagy, J.D., W.R. Boynton, C.W. Keefe, and K.V. Wood. 2004. Hypoxia in Chesapeake Bay, 1950–2001: long-term change in relation to nutrient loading and river flow. Estuaries 27: 634–658.

    Article  CAS  Google Scholar 

  • Holben, B.N., T.F. Eck, I. Slutsker, D. Tanre, J.P. Buis, A. Setzer, E. Vermote, J.A. Reagan, Y.J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov. 1998. AERONET—a federated instrument network and data archive for aerosol characterization. Remote Sensing of Environment 66: 1–16.

    Article  Google Scholar 

  • Hopkinson, C.S., and E.M. Smith. 2005. Estuarine respiration: an overview of benthic, pelagic, and whole system respiration. In Respiration in aquatic ecosystems, ed. P.A. del Giorgio and P.J.B. le Williams, 123–147. New York: Oxford Univ. Press.

    Google Scholar 

  • Huisman, J., J. Sharples, J.M. Stroom, P.M. Visser, W.E.A. Kardinaal, J.M.H. Verspagen, and B. Sommeijer. 2004. Changes in turbulent mixing shift competition for light between phytoplankton species. Ecology 85: 2960–2970.

    Article  Google Scholar 

  • Jakimavičius, D., and J. Kriaučiūnienė. 2013. The climate change impact on the water balance of the Curonian Lagoon. Water Resources 40(2): 120–132.

    Article  Google Scholar 

  • Jäntti, H., and S. Hietanen. 2012. The effects of hypoxia on sediment nitrogen cycling in the Baltic Sea. Ambio 41: 161–169. doi:10.1007/s13280-011-0233-6.

    Article  Google Scholar 

  • Jensen, L.M., K. Sand-Jensen, S. Marcher, and M. Hansen. 1990. Plankton community respiration along a nutrient gradient in a shallow Danish estuary. Marine Ecology Progress Series 61: 75–85.

    Article  Google Scholar 

  • Jensen, H.S., P.B. Mortensen, F.Ø. Andersen, E. Rasmussen, and A. Jensen. 1995. Phosphorus cycling in coastal marine sediment, Aarhus Bay, Denmark. Limnology and Oceanography 40: 908–917.

    Article  CAS  Google Scholar 

  • Jöhnk, K.D., J. Huisman, J. Sharples, B. Sommeijer, P.M. Visser, and J.M. Stroom. 2008. Summer heatwaves promote blooms of harmful cyanobacteria. Global Change Biology 14: 495–512. doi:10.1111/j.1365-2486.2007.01510.x.

    Article  Google Scholar 

  • Jonasson, L., Z. Wan, J.H.S. Hansen, and J. She. 2011. The impacts of physical processes on oxygen variations in the North Sea-Baltic Sea transition zone. Ocean Science Discussion 8: 1723–1755. doi:10.5194/osd-8-1723-2011.

    Article  Google Scholar 

  • Jurevičius, R. 1959. Hydrochemical characteristic of the Kuršių Marios Lagoon. In Kuršių marios, ed. Institute of Biology, 69–108. Vilnius: Academy of Sciences. [In Russian with German summary]

  • Kahru, M., U. Horstmann, and O. Rud. 1994. Increased cyanobacterial blooming in the Baltic Sea detected by satellites: natural fluctuation or ecosystem change? Ambio 23: 469–472.

    Google Scholar 

  • Kanoshina, I., U. Lips, and J.M. Leppänen. 2003. The influence of weather conditions (temperature and wind) on cyanobacterial bloom development in the Gulf of Finland (Baltic Sea). Harmful Algae 2: 29–41.

    Article  Google Scholar 

  • Kemp, W.M., P.A. Sampou, J. Garber, J. Tuttle, and W.R. Boynton. 1992. Seasonal depletion of oxygen from bottom waters of Chesapeake Bay: relative roles of benthic and planktonic respiration and physical exchange processes. Marine Ecology Progress Series 85: 137–152.

    Article  CAS  Google Scholar 

  • Kemp, W.M., J.M. Testa, D.J. Conley, D. Gilbert, and J.D. Hagy. 2009. Temporal responses of coastal hypoxia to nutrient loading and physical controls. Biogeosciences 6: 2985–3008. www.biogeosciences.net/6/2985/2009/doi:10.5194/bg-6-2985-2009.

    Google Scholar 

  • Kotchenova, S.Y., E.F. Vermote, R. Matarrese, and F.J. Klemm Jr. 2006. Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: Path radiance. Applied Optics 45: 6762–6774. doi:10.1364/AO.45.006762.

    Article  Google Scholar 

  • Lorenzen, C.J. 1967. Determination of chlorophyll and pheopigments: spectrophotometric equations. Limnology and Oceanography 12: 343–346.

    Article  CAS  Google Scholar 

  • Minghelli-Roman, A., T. Laugier, L. Polidori, S. Mathieu, L. Loubersac, and P. Gouton. 2011. Satellite survey of seasonal trophic status and occasional anoxic ‘malaïgue’ crises in the Thau lagoon using MERIS images. International Journal of Remote Sensing 32(4): 909–923.

    Article  Google Scholar 

  • MRC, 1996. Annual report of scientific work. Center of Marine research. Environmental Protection Ministry, p 94.

  • Murrell, M.C., J.G. Campbell, J.D. Hagy III, and J.M. Caffrey. 2009. Effects of irradiance on benthic and water column processes in a Gulf of Mexico estuary: Pensacola Bay, Florida, USA. Estuarine, Coastal and Shelf Science 81: 501–512.

    Article  CAS  Google Scholar 

  • Olenina, I. 1998. Long-term changes in the Kuršių Marios lagoon: eutrophication and phytoplankton response. Ekologija 1: 56–65.

    Google Scholar 

  • Paldaviciene, A., H. Mazur-Marzec, and A. Razinkovas. 2009. Toxic cyanobacteria blooms in the Lithuanian part of the Curonian Lagoon. Oceanologia 51(2): 203–216.

    Article  Google Scholar 

  • Park, K., Ch.-K. Kim, and W.W. Schroeder. 2007. Temporal variability in summertime bottom hypoxia in shallow areas of Mobile Bay, Alabama. Estuaries and Coasts 30(1): 54–65.

    Google Scholar 

  • Patt, F.S., 2002. Navigation algorithms for the SeaWiFS mission. NASA Technical Memorandum, vol. 206892. Greenbelt, MD: National Aeronautics and Space Administration, Goddard Space Flight Center.

  • Pilkaitytė, R. 2003. Phytoplankton seasonal succession and abundance in the eutrophic estuarine lagoons. Summary of Doctoral Disertation. Klaipėda: Klaipėda University.

    Google Scholar 

  • Pilkaitytė, R., and A. Razinkovas. 2006. Factors controlling phytoplankton blooms in a temperate estuary: nutrient limitation and physical forcing. Hydrobiologia 555(1): 41–48.

    Article  Google Scholar 

  • Pilkaitytė, R., and A. Razinkovas. 2007. Seasonal changes in phytoplankton composition and nutrient limitation in a shallow Baltic lagoon. Boreal Environmental Research 12(5): 551–559.

    Google Scholar 

  • Post, A.F., R. De Wit, and L.R. Mur. 1985. Interactions between temperature and light intensity on growth and photosynthesis of the cyanobacterium Oscillatoria agardhii. Journal of Plankton Research 7: 487–495.

    Article  Google Scholar 

  • Rabalais, N.N., R.E. Turner, and W.J. Wiseman Jr. 2002. Gulf of Mexico hypoxia, A.K.A. “The Dead Zone”. Annual Review of Ecology and Systematics 33: 235–263. doi:10.1146/annurev.ecolsys.33.010802.150513.

    Article  Google Scholar 

  • Razinkovas, A., I. Dailidienė and R. Pilkaitytė. 2008. Reduction of the Land-Based Discharges to the Curonian Lagoon in a View of a Climate Change Perspective. In Sustainable Use and Development of Watersheds. NATO Science for Peace and Security Series C: Environmental Security, ed. E. Gönenç,, A. Vadineanu, J. P. Wolflin, and R. C. Russo. Berlin: 403–413.

  • Santer, R., and C. Schmechtig. 2000. Adjacency effects on water surfaces: primary scattering approximation and sensitivity study. Applied Optics 39: 361–375.

    Article  CAS  Google Scholar 

  • Souchu, P., A. Gasc, A. Vaquer, Y. Collos, H. Tournier, and J.M. Deslous-Paoli. 1998. Biogeochemical aspects of bottom anoxia in a Mediterranean lagoon. Marine Ecology Progress Series 164: 135–146.

    Article  CAS  Google Scholar 

  • Stanley, D.W., and S.W. Nixon. 1992. Stratification and bottom-water hypoxia in the Pamlico River Estuary. Estuaries 15: 270–281.

    Article  CAS  Google Scholar 

  • Steckbauer, A., C.M. Duarte, J. Carstensen, R. Vaquer-Sunyer, and D.J. Conley. 2011. Ecosystem impacts of hypoxia: thresholds of hypoxia and pathways to recovery. Environmental Research Letters 6(2): 1–12. doi:10.1088/1748-9326/6/2/025003.

    Article  Google Scholar 

  • Tyler, R.M., D.C. Brady, and T. Targett. 2009. Temporal and spatial dynamics of diel-cycling hypoxia in estuarine tributaries. Estuaries and Coasts 32: 123–145.

    Article  CAS  Google Scholar 

  • Vahtera, E., D.J. Conley, B.G. Gustafsson, H. Kuosa, H. Pitkänen, O.P. Savchuk, T. Tamminen, M. Viitasalo, M. Voss, N. Wasmund, and F. Wulff. 2007. Internal ecosystem feedbacks enhance nitrogen-fixing cyanobacteria blooms and complicate management in the Baltic Sea. Ambio 36: 186–194.

    Article  CAS  Google Scholar 

  • Vermote, E.F., D. Tanrè, J.L. Deizè, M. Herman, and J.J. Morcrette. 1997. Second simulation of the satellite signal in the solar spectrum, 6S: an overview. Transactions on Geoscience and Remote Sensing 35: 675–686. doi:10.1109/36.581987.

    Article  Google Scholar 

  • Vos, R.J., J.H.M. Hakvoort, R.W.J. Jordans, and B.W. Ibelings. 2003. Multiplatform optical monitoring of eutrophication in temporally and spatially variable lakes. The Science of the Total Environment 312: 221–243.

    Article  CAS  Google Scholar 

  • Walsby, A.E., P.K. Hayes, R. Boje, and L.J. Stal. 2001. The selective advantage of buoyancy provided by gas vesicles for planktonic cyanobacteria in the Baltic Sea. New Phytologist 136: 407–417.

    Article  Google Scholar 

  • Wynne, T.T., R.P. Stumpf, M.C. Tomlinson, and J. Dybleb. 2010. Characterizing a cyanobacterial bloom in western Lake Erie using satellite imagery and meteorological data. Limnology and Oceanography 55(5): 2025–2036.

    Article  Google Scholar 

  • Zilius, M., M. Bartoli, D.D. Daunys, R. Pilkaityte, and A. Razinkovas. 2012a. Patterns of benthic oxygen uptake in a hypertrophic lagoon: spatial variability and controlling factors. Hydrobiologia 699: 85–98.

    Article  CAS  Google Scholar 

  • Zilius, M., D. Daunys, J. Petkuviene, and M. Bartoli. 2012b. Sediment-water oxygen, ammonium and soluble reactive phosphorus fluxes in a turbid freshwater estuary (Curonian lagoon, Lithuania): evidences of benthic microalgal activity. Journal of Limnology 71(2): 309–319.

    Article  Google Scholar 

Download references

Acknowledgments

Mindaugas Zilius was supported by a postdoctoral fellowship funded by the European Union Structural Funds project “Postdoctoral Fellowship Implementation in Lithuania.” Paul Bukaveckas was supported by a Fulbright Fellowship during his residence at Klaipeda University. MERIS data were made available through the ESA project AO-553 (MELINOS). This study was co-funded by CYAN-IS-WAS (Ministero dell’Istruzione dell’Università e della Ricerca, Science and technological cooperation between Italy and the Kingdom of Sweden) and CLAM-PHYM (Italian Space Agency, contract ASI I/015/11/0) projects. We gratefully thank the Lithuanian Hydrometeorological Service of the Ministry of Environment for providing meteorological data. We also gratefully thank three anonymous reviewers for valuable comments which improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mindaugas Zilius.

Additional information

Communicated by: Marianne Holmer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zilius, M., Bartoli, M., Bresciani, M. et al. Feedback Mechanisms Between Cyanobacterial Blooms, Transient Hypoxia, and Benthic Phosphorus Regeneration in Shallow Coastal Environments. Estuaries and Coasts 37, 680–694 (2014). https://doi.org/10.1007/s12237-013-9717-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-013-9717-x

Keywords

Navigation