Skip to main content
Log in

Interspecific differences in environmental response blur trait dynamics in classic statistical analyses

  • Short Note
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Trait-based ecology strives to better understand how species, through their bio-ecological traits, respond to environmental changes, and influence ecosystem functioning. Identifying which traits are most responsive to environmental changes can provide insight for understanding community structuring and developing sustainable management practices. However, misinterpretations are possible, because standard statistical methods (e.g., principal component analysis and linear regression) for identifying and ranking the responses of different traits to environmental changes ignore interspecific differences. Here, using both artificial data and real-world examples from marine fish communities, we show how considering species-specific responses can lead to drastically different results than standard community-level methods. By demonstrating the potential impacts of interspecific differences on trait dynamics, we illuminate a major, yet rarely discussed issue, highlighting how analytical misinterpretations can confound our basic understanding of trait responses, which could have important consequences for biodiversity conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Auber A (1992) International bottom trawl survey (IBTS). https://doi.org/10.18142/17

  • Cheung WW, Watson R, Pauly D (2013) Signature of ocean warming in global fisheries catch. Nature 497:365–368

    Article  CAS  Google Scholar 

  • D’agata S, Vigliola L, Graham NAJ, Wantiez L, Parravicini V, Villéger S, Mou-Tham G, Frolla P, Friedlander AM, Kulbicki M, Mouillot D (2016) Unexpected high vulnerability of functions in wilderness areas: evidence from coral reef fishes. Proc R Soc B Biol Sci 283:20160128. https://doi.org/10.1098/rspb.2016.0128

    Article  Google Scholar 

  • de Bello F, Lepš J, Lavorel S, Moretti M (2007) Importance of species abundance for assessment of trait composition: an example based on pollinator communities. Community Ecol 8:163–170

    Article  Google Scholar 

  • de Bello F, Lavorel S, Lavergne S, Albert CH, Boulangeat I, Mazel F, Thuiller W (2012) Hierarchical effects of environmental filters on the functional structure of plant communities: a case study in the French Alps. Ecography 36:393–402. https://doi.org/10.1111/j.1600-0587.2012.07438.x

    Article  Google Scholar 

  • Dehling DM, Jordano P, Schaefer HM, Böhning-Gaese K, Schleuning M (2016) Morphology predicts species’ functional roles and their degree of specialization in plant–frugivore interactions. Proc R Soc B Biol Sci. https://doi.org/10.1098/rspb.2015.2444

    Article  Google Scholar 

  • Dı́az S, Cabido M (2001) Vive la difference: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16:646–655

    Article  Google Scholar 

  • Díaz S, Lavorel S, de Bello F, Quétier F, Grigulis K, Robson TM (2007) Incorporating plant functional diversity effects in ecosystem service assessments. Proc Natl Acad Sci 104:20684–20689

    Article  Google Scholar 

  • Dulvy NK, Rogers SI, Jennings S, Stelzenmller V, Dye SR, Skjoldal HR (2008) Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. J Appl Ecol 45:1029–1039. https://doi.org/10.1111/j.1365-2664.2008.01488.x

    Article  Google Scholar 

  • Edwards M, Richardson AJ (2004) Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430:881

    Article  CAS  Google Scholar 

  • Engelhard GH, Ellis JR, Payne MR, ter Hofstede R, Pinnegar JK (2011) Ecotypes as a concept for exploring responses to climate change in fish assemblages. ICES J Mar Sci 68:580–591. https://doi.org/10.1093/icesjms/fsq183

    Article  Google Scholar 

  • Fort F, Cruz P, Jouany C (2014) Hierarchy of root functional trait values and plasticity drive early-stage competition for water and phosphorus among grasses. Funct Ecol 28:1030–1040

    Article  Google Scholar 

  • Frainer A, Primicerio R, Kortsch S, Aune M, Dolgov AV, Fossheim M, Aschan MM (2017) Climate-driven changes in functional biogeography of Arctic marine fish communities. Proc Natl Acad Sci 114:12202–12207

    Article  CAS  Google Scholar 

  • Gaüzère P, Doulcier G, Devictor V, Kéfi S (2019) A framework for estimating species-specific contributions to community indicators. Ecol Indic 99:74–82

    Article  Google Scholar 

  • Graham NA, Jennings S, MacNeil MA, Mouillot D, Wilson SK (2015) Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518:94–97

    Article  CAS  Google Scholar 

  • Grime J (1998) Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J Ecol 86:902–910

    Article  Google Scholar 

  • Gross N, Le Bagousse-Pinguet Y, Liancourt P, Berdugo M, Gotelli NJ, Maestre FT (2017) Functional trait diversity maximizes ecosystem multifunctionality. Nat Ecol Evol 1:0132

    Article  Google Scholar 

  • Hughes TP, Anderson KD, Connolly SR, Heron SF, Kerry JT, Lough JM, Baird AH, Baum JK, Berumen ML, Bridge TC, Claar DC, Eakin CM, Gilmour JP, Graham NAJ, Harrison H, Hobbs J-PA, Hoey AS, Hoogenboom M, Lowe RJ, McCulloch MT, Pandolfi JM, Pratchett M, Schoepf V, Torda G, Wilson SK (2018) Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359:80. https://doi.org/10.1126/science.aan8048

    Article  CAS  Google Scholar 

  • Hulme M, Barrow EM, Arnell NW, Harrison PA, Johns TC, Downing TE (1999) Relative impacts of human-induced climate change and natural climate variability. Nature 397:688–691

    Article  CAS  Google Scholar 

  • Jamil T, Kruk C, ter Braak CJF (2014) A unimodal species response model relating traits to environment with application to phytoplankton communities. PLoS ONE 9:e97583. https://doi.org/10.1371/journal.pone.0097583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keddy PA (1992) Assembly and response rules: two goals for predictive community ecology. J Veg Sci 3:157–164. https://doi.org/10.2307/3235676

    Article  Google Scholar 

  • Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545–556

    Article  Google Scholar 

  • Lefcheck JS, Bastazini VA, Griffin JN (2015) Choosing and using multiple traits in functional diversity research. Environ Conserv 42:104–107

    Article  Google Scholar 

  • Legendre P (2005) Species associations: the Kendall coefficient of concordance revisited. J Agric Biol Environ Stat 10:226–245

    Article  Google Scholar 

  • Legendre P, Legendre LF (2012) Numerical ecology. Elsevier, Amsterdam

    Google Scholar 

  • Mcgill B, Enquist B, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–185. https://doi.org/10.1016/j.tree.2006.02.002

    Article  PubMed  Google Scholar 

  • McLean M, Mouillot D, Lindegren M, Engelhard G, Villéger S, Marchal P, Brind’Amour A, Auber A (2018a) A climate-driven functional inversion of connected marine ecosystems. Curr Biol 28:3654–3660.e3. https://doi.org/10.1016/j.cub.2018.09.050

    Article  CAS  PubMed  Google Scholar 

  • McLean M, Mouillot D, Auber A (2018b) Ecological and life history traits explain a climate-induced shift in a temperate marine fish community. Mar Ecol Prog Ser 606:175–186

    Article  Google Scholar 

  • McLean MJ, Mouillot D, Goascoz N, Schlaich I, Auber A (2019) Functional reorganization of marine fish nurseries under climate warming. Glob Change Biol 25:660–674. https://doi.org/10.1111/gcb.14501

    Article  Google Scholar 

  • Messmer V, Pratchett MS, Hoey AS, Tobin AJ, Coker DJ, Cooke SJ, Clark TD (2017) Global warming may disproportionately affect larger adults in a predatory coral reef fish. Glob Change Biol 23:2230–2240. https://doi.org/10.1111/gcb.13552

    Article  Google Scholar 

  • Mokany K, Ash J, Roxburgh S (2008) Functional identity is more important than diversity in influencing ecosystem processes in a temperate native grassland. J Ecol 96:884–893

    Article  Google Scholar 

  • Mouillot D, Villeger S, Parravicini V, Kulbicki M, Arias-Gonzalez JE, Bender M, Chabanet P, Floeter SR, Friedlander A, Vigliola L, Bellwood DR (2014) Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proc Natl Acad Sci 111:13757–13762. https://doi.org/10.1073/pnas.1317625111

    Article  CAS  PubMed  Google Scholar 

  • Nickerson KJ, Grothues TM, Able KW (2018) Sensitivity of a fish time-series analysis to guild construction: a case study of the Mullica River-Great Bay ecosystem. Mar Ecol Prog Ser 598:113–129

    Article  Google Scholar 

  • Noordijk J, Musters CJM, van Dijk J, de Snoo GR (2010) Invertebrates in field margins: taxonomic group diversity and functional group abundance in relation to age. Biodivers Conserv 19:3255–3268. https://doi.org/10.1007/s10531-010-9890-1

    Article  Google Scholar 

  • Ospina AF, Mora C (2004) Effect of body size on reef fish tolerance to extreme low and high temperatures. Environ Biol Fishes 70:339–343

    Article  Google Scholar 

  • Pecuchet L, Lindegren M, Hidalgo M, Delgado M, Esteban A, Fock HO, Gil de Sola L, Punzón A, Sólmundsson J, Payne MR (2017) From traits to life-history strategies: deconstructing fish community composition across European seas. Glob Ecol Biogeogr 26:812–822. https://doi.org/10.1111/geb.12587

    Article  Google Scholar 

  • Pecuchet L, Reygondeau G, Cheung WWL, Licandro P, van Denderen PD, Payne MR, Lindegren M (2018) Spatial distribution of life-history traits and their response to environmental gradients across multiple marine taxa. Ecosphere 9:e02460. https://doi.org/10.1002/ecs2.2460

    Article  Google Scholar 

  • Peres-Neto PR, Jackson DA, Somers KM (2003) Giving meaningful interpretation to ordination axes: assessing loading significance in principal component analysis. Ecology 84:2347–2363

    Article  Google Scholar 

  • Peres-Neto PR, Dray S, ter Braak CJF (2017) Linking trait variation to the environment: critical issues with community-weighted mean correlation resolved by the fourth-corner approach. Ecography 40:806–816. https://doi.org/10.1111/ecog.02302

    Article  Google Scholar 

  • Pla L, Casanoves F, Di Rienzo J (2011) Quantifying functional biodiversity. Springer, New York

    Google Scholar 

  • Pollock LJ, Morris WK, Vesk PA (2012) The role of functional traits in species distributions revealed through a hierarchical model. Ecography 35:716–725

    Article  Google Scholar 

  • Poloczanska ES, Brown CJ, Sydeman WJ, Kiessling W, Schoeman DS, Moore PJ, Brander K, Bruno JF, Buckley LB, Burrows MT (2013) Global imprint of climate change on marine life. Nat Clim Change 3:919–925

    Article  Google Scholar 

  • Princé K, Zuckerberg B (2015) Climate change in our backyards: the reshuffling of North America’s winter bird communities. Glob Change Biol 21:572–585. https://doi.org/10.1111/gcb.12740

    Article  Google Scholar 

  • Sakschewski B, von Bloh W, Boit A, Poorter L, Peña-Claros M, Heinke J, Joshi J, Thonicke K (2016) Resilience of Amazon forests emerges from plant trait diversity. Nat Clim Change 6:1032–1036. https://doi.org/10.1038/nclimate3109

    Article  Google Scholar 

  • Sandblom E, Gräns A, Axelsson M, Seth H (2014) Temperature acclimation rate of aerobic scope and feeding metabolism in fishes: implications in a thermally extreme future. Proc R Soc B Biol Sci. https://doi.org/10.1098/rspb.2014.1490

    Article  Google Scholar 

  • Suding KN, Lavorel S, Chapin FS, Cornelissen JHC, DíAz S, Garnier E, Goldberg D, Hooper DU, Jackson ST, Navas M-L (2008) Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Glob Change Biol 14:1125–1140. https://doi.org/10.1111/j.1365-2486.2008.01557.x

    Article  Google Scholar 

  • Thuiller W, Lavorel S, Sykes MT, Araújo MB (2006) Using niche-based modelling to assess the impact of climate change on tree functional diversity in Europe. Divers Distrib 12:49–60

    Article  Google Scholar 

  • Verberk WCEP, Durance I, Vaughan IP, Ormerod SJ (2016) Field and laboratory studies reveal interacting effects of stream oxygenation and warming on aquatic ectotherms. Glob Change Biol 22:1769–1778. https://doi.org/10.1111/gcb.13240

    Article  Google Scholar 

  • Violle C, Navas M-L, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional! Oikos 116:882–892. https://doi.org/10.1111/j.0030-1299.2007.15559.x

    Article  Google Scholar 

  • Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of Earth’s ecosystems. Science 277:494–499

    Article  CAS  Google Scholar 

  • Weiher E, Keddy PA (1995) Assembly rules, null models, and trait dispersion: new questions from old patterns. Oikos 74:159. https://doi.org/10.2307/3545686

    Article  Google Scholar 

  • Winemiller KO, Fitzgerald DB, Bower LM, Pianka ER (2015) Functional traits, convergent evolution, and periodic tables of niches. Ecol Lett 18:737–751. https://doi.org/10.1111/ele.12462

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by Électricité de France (RESTICLIM and ECLIPSE Project), IFREMER (ECLIPSE Project), Région Hauts-de-France and the Foundation for Research on Biodiversity (ECLIPSE Project, Contract No. astre 2014-10824).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew McLean.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. All applicable international, national and/or institutional guidelines for sampling, care and experimental use of organisms for the study were followed.

Additional information

Responsible Editor: P. Kraufvelin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reviewed by B. Weigel and an undisclosed expert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McLean, M., Mouillot, D., Villéger, S. et al. Interspecific differences in environmental response blur trait dynamics in classic statistical analyses. Mar Biol 166, 152 (2019). https://doi.org/10.1007/s00227-019-3602-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-019-3602-5

Navigation