Skip to main content
Log in

Length and weight estimates from diagnostic hard part structures of fish, crustacea and cephalopods forage species in the western Indian Ocean

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

To estimate the original prey size of well-digested prey (fish, cephalopod and crustacean) of large pelagic fish predators representing 17 species in eight families (Scombridae, Xiphiidae, Istiophoridae, Carangidae, Coryphaenidae, Alepisauridae, Sphyraenidae and Carcharhinidae), we presented regression equations relating the length and weight of the prey to lengths of diagnostic hard part structures recovered from stomach contents. Stomach samples were collected in the western Indian Ocean between 2000 and 2008 from predators caught by three fishing gears: longline, purse seine and troll lines. In addition, fresh specimens were collected from trawls nets carried out during scientific cruises at depths ranging from the surface to 500 m. Parameters of the least-square regression equations were estimated between different diagnostic hard parts and the length and the weight of the prey. These relationships are useful for estimating the reconstructed weight of the diet of top predators and for estimating the predator size-prey size ratios. This work is the first reference on such relationships for the forage fauna of the western Indian Ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Ahyong ST (2001) Revision of the Australian stomatopod crustacean. Records of the Australian Museum, 26

  • Bertrand A, Bard F-X, Josse E (2002) Tuna food habits related to the micronekton distribution in French Polynesia. Mar Biol 140:1023–1037

    Article  Google Scholar 

  • Bowen WD (2000) Reconstruction of pinniped diets: accounting for complete digestion of otoliths and cephalopods beaks. Can J Fish Aquat Sci 57:898–905

    Article  Google Scholar 

  • Carlander KD (1969) Handbook of freshwater fishery biology. The Iowa State University, Ames

    Google Scholar 

  • Cherel Y, Ridoux V, Rodhouse PG (1996) Fish and squid in the diet of king penguin chicks, Aptenodytes patagonicus, during winter at sub-antarctic Crozet Islands. Mar Biol 126:559–570

    Article  Google Scholar 

  • Chipps SR, Garvey JE (2007) Quantitative assessment of food habits and feeding patterns. In: Guy C, Brown M (eds) Analysis and interpretation of freshwater fisheries data. Am Fish Soc 473-514

  • Clarke MR (1986) A handbook for the identification of cephalopod beaks. Clarendon, Oxford

    Google Scholar 

  • Crosnier A, Forest J (1973) Les crevettes profondes de l’Atlantique oriental tropical. Faune tropicale XIX. ORSTOM, Paris

    Google Scholar 

  • Crosnier A, Thomassin B (1974) Sur des crabes de la famille des Portunidae (Crustacea, Decapoda) nouveaux pour Madagascar ou rares. Bull MNHN 241:1097–1118

    Google Scholar 

  • Froese R (2006) Cube law, condition factor and weight-length relationships: history, meta-analysis and recommendations. J Appl Ichthyol 23:241–253

    Article  Google Scholar 

  • Hansel HC, Duke SP, Lofy PT, Gray GA (1988) Use of diagnosic bones to identify and estimate original lengths of ingested prey fishes. Trans Am Fish Soc 117:55–62

    Article  Google Scholar 

  • Kulbicki M, Guillemot N, Amand M (2005) A general approach to length–weight relationships for New Caledonian lagoon fishes. Cybium 29:235–252

    Google Scholar 

  • Ménard F, Labrune C, Shin Y-J, Asine A-S, Bard F-X (2006) Opportunistic predation in tuna: a size-based approach. Mar Ecol Prog Ser 323:223–231

    Article  Google Scholar 

  • Myers RA, Worm B (2003) Rapid worldwide depletion of predatory fish communities. Nature 123:280–283

    Article  Google Scholar 

  • Nesis KN (1987) Cephalopods of the world. TFH Publications Inc, Neptune City

    Google Scholar 

  • Potier, M., Lucas, V, Marsac, F, Sabatié, R, Ménard F (2002) On-going research activities on trophic ecology of tuna in equatorial ecosystems of the Indian Ocean. Fourth session of the IOTC working party on tropical tunas, Shangaï, Chine, 3–11/06/2002. WPTT/02/24 IOTC Proceedings 5: 368–374

  • Potier M, Marsac F, Cherel Y, Lucas V, Sabatié R, Maury O, Ménard F (2007) Forage fauna in the diet of three large pelagic fishes (lancetfish, swordfish and yellowfin tuna) in the western equatorial Indian Ocean. Fish Res 83:60–72

    Article  Google Scholar 

  • Potier M, Romanov E, Cherel Y, Sabatié R, Zamorov V, Ménard F (2008) Spatial distribution of Cubiceps pauciradiatus (Perciformes: Nomeidae) in the tropical Indian Ocean and its importance in the diet of large pelagic fishes. Aquat Living Resour 21:123–134

    Article  Google Scholar 

  • Richardson AJ, Lamberts C, Isaacs G, Moloney CL, Gibbons MJ (2000) Length-weight relationships of some important forage crustaceans from South Africa. Naga Rep 23(2):29–33

    Google Scholar 

  • Ricker WE (1958) Handbook of computations for biological statistics of fish populations. Fish Res Board Can 119:1–300

    Google Scholar 

  • Romanov E, Potier M, Zamorov V, Ménard F (2009) The swimming crab Charybdis smithii: distribution, biology and trophic role in the pelagic ecosystem of the western Indian Ocean. Mar Biol 156:1089–1107

    Article  Google Scholar 

  • Scharf FS, Buckel JA, Juanes F, Conover DO (1997) Estimating piscine prey size from partial remains: testing for shift in foraging mode by juvenile blue fish. Env Biol Fish 49:377–388

    Article  Google Scholar 

  • Smale MJ, Watson G, Hecht T (1995) Otolith Atlas of southern African marine fishes Ichthyological Monographs. J/L/B/Smith Institute of Ichthyology, Grahamstown

    Google Scholar 

  • Smith MM, Heemstra PC (1986) Smiths’ sea fishes. Southern Book Pub, Johannesburg

    Google Scholar 

  • Thurstan RH, Brockington S, Roberts CM (2010) The effects of 118 years of industrial fishing on UK bottom trawl fisheries. Nature Communications, 1–6

  • Tregouboff G, Rose M (1978) Manuel de planctonologie méditerranéenne. CNRS, Paris

    Google Scholar 

  • Xinjun C, Bilin L, Siquan T, Weiguo Q, Xiaohu Z (2007) Fishery biology of purpleback squid, Sthenoteuthis oualaniensis, in the northwest Indian Ocean. Fish Res 83:98–104

    Article  Google Scholar 

  • Zar JH (1999) Biostatistical analysis, 4th edition. Prentice-Hall International Publications

Download references

Acknowledgements

We wish to thank the Seychelles Fishing Authority (SFA), owner of the longliner “Amitié”, the Paul Emile Victor Institute (IPEV) owner of the R/V La Curieuse, the ASCLME project which allowed us to embark on board the R/V F. Nansen, and the crew of all the vessels and purse seiners for helping us to undertake this research program by hosting us for the trips on board. This work was supported by the BIOPS project funded by la Fondation pour la Recherche sur la Biodiversité (No. CD-AOOI-07-013). We thank anonymous referees for their valuable comments and suggestions that helped us to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Potier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Potier, M., Ménard, F., Benivary, H.D. et al. Length and weight estimates from diagnostic hard part structures of fish, crustacea and cephalopods forage species in the western Indian Ocean. Environ Biol Fish 92, 413–423 (2011). https://doi.org/10.1007/s10641-011-9848-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10641-011-9848-5

Keywords

Navigation