Skip to main content
Log in

Microbial community responses to bioremediation treatments for the mitigation of low-dose anthracene in marine coastal sediments of Bizerte lagoon (Tunisia)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Purpose

The main goals of this study were to investigate (1) the behavior of microbial communities in response to low-dose bioavailable anthracene addition in lightly contaminated sediment from Bizerte Lagoon and (2) the effects of bioremediation treatments on microbial biomass, activity, and community structure.

Methods

Sediment microcosms amended with 1 ppm anthracene were incubated in triplicate during 30 days. Biostimulation (addition of nitrogen and phosphorus fertilizer) and bioaugmentation (inoculation of a hydrocarbonoclastic bacterium) were used as bioremediation treatments. Bacterial biomass was estimated using flow cytometry. Sediment oxygen consumption was measured with oxygen microelectrodes. Bacterial community structure was assessed by molecular fingerprints (terminal restriction fragment length polymorphism; T-RFLP) analysis.

Results

Anthracene contamination resulted in a significant reduction of bacterial abundance with an impact on cell integrity. Concomitantly, sediment oxygen consumption was strongly inhibited. Correspondence analysis on T-RFLP data indicated that bacterial community structures from anthracene-contaminated microcosms were different from that of the control. Interestingly, the changes observed in microbial biomass, structure, and activities as a result of anthracene contamination were not alleviated even with the use of biostimulation and combination of biostimulation and bioaugmentation strategy for anthracene bioremediation. Nevertheless, both treatment methods resulted in different community structures relative to the contaminated and control microcosms with the appearance of distinct populations.

Conclusion

Anthracene spiking severely affected microbial communities, suggesting dominance of nontolerant populations in this lightly-contaminated sediment. Although biostimulation and/or bioaugmentation treatments did not alleviate the anthracene toxic effects, the changes observed in microbial population and structure suggest that the proposed treatments might be promising to promote bacterial growth. Further works are still required to propose a more efficient strategy to stimulate biodegradation that takes into account the complex interactions between species for resource access.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Atagana HI (2006) Biodegradation of polyacyclic aromatic hydrocarbons in contaminated soil by biostimulation and bioaugmentation in the presence of copper(II) ions. World J Microbiol Biotechnol 22:1145–1153

    Article  CAS  Google Scholar 

  • Bauer JE, Capone DG (1985) Degradation and mineralization of the polycyclic aromatic hydrocarbons anthracene and naphthalene in intertidal marine sediments. Appl Environ Microbiol 50:81–90

    CAS  Google Scholar 

  • Ben Said O, Goni-Urriza MS, El Bour M, Dellali M, Aissa P, Duran R (2008) Characterization of aerobic polycyclic aromatic hydrocarbon-degrading bacteria from Bizerte lagoon sediments, Tunisia. J Appl Microbiol 104:987–997

    Article  CAS  Google Scholar 

  • Ben Said O, Goni-Urriza M, El Bour M, Aissa P, Duran R (2010) Bacterial community structure of sediments of the Bizerte Lagoon (Tunisia), a Southern Mediterranean Coastal Anthropized Lagoon. Microb Ecol 59:445–456

    Article  Google Scholar 

  • Berg P, Risgaard-Petersen N, Rysgaard S (1998) Interpretation of measured concentration profiles in sediment pore water. Limnol Oceanogr 43:1500–1510

    Article  CAS  Google Scholar 

  • Bowling JW, Leversee GJ, Landrum PF, Giesy JP (1983) Acute mortality of anthracene-contaminated fish exposed to sunlight. Aquat Toxicol 3:79–90

    Article  CAS  Google Scholar 

  • Brenner RC, Magar VS, Ickes JA, Abbott JE, Stout SA, Crecelius EA, Bingler LS (2002) Characterization and FATE of PAH-contaminated sediments at the Wyckoff/Eagle Harbor superfund site. Environ Sci Technol 36:2605–2613

    Article  CAS  Google Scholar 

  • Bridges TS, Levin LA, Cabrera D, Plaia G (1994) Effects of sediment amended with sewage, algae, or hydrocarbons on growth and reproduction in 2 opportunistic polychaetes. J Exp Mar Biol Ecol 177:99–119

    Article  Google Scholar 

  • Broecker WS, Peng TH (1974) Gas exchange rates between air and sea. Tellus 26:21–35

    Article  CAS  Google Scholar 

  • Bugg T, Foght JM, Pickard MA, Gray MR (2000) Uptake and active efflux of polycyclic aromatic hydrocarbons by Pseudomonas fluorescens LP6a. Appl Environ Microbiol 66:5387–5392

    Article  CAS  Google Scholar 

  • Carman KR, Fleeger JW, Means JC, Pomarico SM, McMillin DJ (1995) Experimental investigation of the effects of polynuclear aromatic-hydrocarbons on an estuarine sediment food web. Mar Environ Res 40:289–318

    Article  CAS  Google Scholar 

  • Dabestani R, Ivanov IN (1999) A compilation of physical, spectroscopic and photophysical properties of polycyclic aromatic hydrocarbons. Photochem Photobiol 70:10–34

    CAS  Google Scholar 

  • Dean-Ross D, Moody JD, Freeman JP, Doerge DR, Cerniglia CE (2001) Metabolism of anthracene by a Rhodococcus species. FEMS Microbiol Lett 204:205–211

    Article  CAS  Google Scholar 

  • Di Gennaro P, Moreno B, Annoni E, Garcia-Rodriguez S, Bestetti G, Benitez E (2009) Dynamic changes in bacterial community structure and in naphthalene dioxygenase expression in vermicompost-amended PAH-contaminated soils. J Hazard Mater 172:1464–1469

    Article  Google Scholar 

  • Duhamel S, Jacquet S (2006) Flow cytometric analysis of bacteria- and virus-like particles in lake sediments. J Microbiol Methods 64:316–332

    Article  CAS  Google Scholar 

  • El-Alawi YS, Dixon DG, Greenberg BM (2001) Effects of a pre-incubation period on the photoinduced toxicity of polycyclic aromatic hydrocarbons to the luminescent bacterium Vibrio fischeri. Environ Toxicol 16:277–286

    Article  CAS  Google Scholar 

  • El-Alawi YS, McConkey BJ, Dixon DG, Greenberg BM (2002) Measurement of short- and long-term toxicity of polycyclic aromatic hydrocarbons using luminescent bacteria. Ecotoxicol Environ Saf 51:12–21

    Article  CAS  Google Scholar 

  • Flores GP, Badillo CM, Cortazar MH, Hipolito CN, Perez RS, Sanchez IG (2010) Toxic effects of linear alkylbenzene sulfonate, anthracene and their mixture on growth of a microbial consortium isolated from polluted sediment. Rev Int Contam Ambient 26:39–46

    Google Scholar 

  • Garcia HE, Gordon LI (1992) Oxygen solubility in seawater—better fitting equations. Limnol Oceanogr 37:1307–1312

    Article  CAS  Google Scholar 

  • Gyedu-Ababio TK, Baird D (2006) Response of meiofauna and nematode communities to increased levels of contaminants in a laboratory microcosm experiment. Ecotoxicol Environ Saf 63:443–450

    Article  CAS  Google Scholar 

  • Hjorth M, Vester J, Henriksen P, Forbes V, Dahllof I (2007) Functional and structural responses of marine plankton food web to pyrene contamination. Mar Ecol Prog Ser 338:21–31

    Article  CAS  Google Scholar 

  • Hlaili AS, Chikhaoui MA, El Grami B, Mabrouk HH (2006) Effects of n and p supply on phytoplankton in Bizerte Lagoon (western Mediterranean). J Exp Mar Biol Ecol 333:79–96

    Article  Google Scholar 

  • Hughes JB, Beckles DM, Chandra SD, Ward CH (1997) Utilization of bioremediation processes for the treatment of PAH-contaminated sediments. J Ind Microbiol Biotechnol 18:152–160

    Article  CAS  Google Scholar 

  • Jacques RJS, Okeke BC, Bento FM, Teixeira AS, Peralba MCR, Camargo FAO (2008) Microbial consortium bioaugmentation of a polycyclic aromatic hydrocarbons contaminated soil. Biores Technol 99:2637–2643

    Article  CAS  Google Scholar 

  • James ID (2002) Modelling pollution dispersion, the ecosystem and water quality in coastal waters: a review. Environ Model Softw 17:363–385

    Article  Google Scholar 

  • Kochevar IE, Armstrong RB, Einbinder J, Walther RR, Harber LC (1982) Coal–tar photo-toxicity—active compounds and action spectra. Photochem Photobiol 36:65–69

    Article  CAS  Google Scholar 

  • Kummrow F, Rech CM, Coimbrao CA, Umbuzeiro GA (2006) Blue rayon-anchored technique/Salmonella microsome microsuspension assay as a tool to monitor for genotoxic polycyclic compounds in Santos estuary. Mutat Res Genet Toxicol Environ Mutagen 609:60–67

    Article  CAS  Google Scholar 

  • Lagauzere S, Pischedda L, Cuny P, Gilbert F, Stora G, Bonzom JM (2009) Influence of Chironomus riparius (Diptera, Chironomidae) and Tubifex tubifex (Annelida, Oligochaeta) on oxygen uptake by sediments. Consequences of uranium contamination. Environ Pollut 157:1234–1242

    Article  CAS  Google Scholar 

  • Laursen AE, Carlton RC (1999) Responses to atrazine of respiration, nitrification, and denitrification in stream sediments measured with oxygen and nitrate microelectrodes. FEMS Microbiol Ecol 29:229–240

    Article  CAS  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier, Amesterdam

    Google Scholar 

  • Long ER (1992) Ranges in chemical concentrations in sediments associated with adverse biological effects. Mar Pollut Bull 24:38–45

    Article  CAS  Google Scholar 

  • Louiz I, Kinani S, Gouze ME, Ben-Attia M, Menif D, Bouchonnet S, Porcher JM, Ben-Hassine OK, Ait-Aissa S (2008) Monitoring of dioxin-like, estrogenic and anti-androgenic activities in sediments of the Bizerta lagoon (Tunisia) by means of in vitro cell-based bioassays: Contribution of low concentrations of polynuclear aromatic hydrocarbons (PAHs). Sci Total Environ 402:318–329

    Article  CAS  Google Scholar 

  • Louiz I, Ben-Attia M, Ben-Hassine OK (2009) Gonadosomatic index and gonad histopathology of Gobius niger (Gobiidea, Teleost) from Bizerta lagoon (Tunisia): evidence of reproduction disturbance. Fish Res 100:266–273

    Article  Google Scholar 

  • Marie D, Partensky F, Jacquet S, Vaulot D (1997) Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Appl Environ Microbiol 63:186–193

    CAS  Google Scholar 

  • McConkey BJ, Duxbury CL, Dixon DG, Greenberg BM (1997) Toxicity of a PAH photooxidation product to the bacteria Photobacterium phosphoreum and the duckweed Lemna gibba: effects of phenanthrene and its primary photoproduct, phenanthrenequinone. Environ Toxicol Chem 16:892–899

    CAS  Google Scholar 

  • Miyasaka T, Asami H, Watanabe K (2006) Impacts of bioremediation schemes on bacterial population in naphthalene-contaminated marine sediments. Biodegradation 17:227–235

    Article  CAS  Google Scholar 

  • Muckian LM, Grant RJ, Clipson NJW, Doyle EM (2009) Bacterial community dynamics during bioremediation of phenanthrene- and fluoranthene-amended soil. Int Biodeterior Biodegrad 63:52–56

    Article  CAS  Google Scholar 

  • Mueller JG, Chapman PJ, Pritchard PH (1989) Creosote-contaminated sites—their potential for bioremediation. Environ Sci Technol 23:1197–1201

    Article  CAS  Google Scholar 

  • Myers CR, Alatalo LJ, Myers JM (1994) Microbial potential for the anaerobic degradation of simple aromatic compounds in sediments of the Milwaukee Harbor, Green Bay and Lake Erie. Environ Toxicol Chem 13:461–471

    Article  CAS  Google Scholar 

  • Nance JM (1991) Effects of oil gas-field produced water on the macrobenthic community in a small gradient estuary. Hydrobiologia 220:189–204

    Article  CAS  Google Scholar 

  • Paisse S, Goni-Urriza M, Coulon F, Duran R (2010) How a bacterial community originating from a contaminated coastal sediment responds to an oil input. Microb Ecol 60:394–405

    Article  Google Scholar 

  • Perelo LW (2010) Review: in situ and bioremediation of organic pollutants in aquatic sediments. J Hazard Mater 177:81–89

    Article  CAS  Google Scholar 

  • Pringault O, Duran R, Jacquet S, Torreton JP (2008) Temporal variations of microbial activity and diversity in marine tropical sediments (New Caledonia lagoon). Microb Ecol 55:247–258

    Article  CAS  Google Scholar 

  • Rasmussen H, Jorgensen BB (1992) Microelectrode studies of seasonal oxygen uptake in a coastal sediment—role of molecular diffusion. Mar Ecol Prog Ser 81:289–303

    Article  CAS  Google Scholar 

  • Revsbech NP (1989) An oxygen microsensor with a guard cathode. Limnol Oceanogr 34:474–478

    Article  CAS  Google Scholar 

  • Revsbech NP (2005) Analysis of microbial communities with electrochemical microsensors and microscale biosensors, environmental microbiology. Methods in enzymology. Elsevier, San Diego, pp 147–166

    Google Scholar 

  • Samanta SK, Singh OV, Jain RK (2002) Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol 20:243–248

    Article  CAS  Google Scholar 

  • Tahir A, Fletcher TC, Houlihan DF, Secombes CJ (1993) Effect of short-term exposure to oil-contaminated sediments on the immune response of dab, Limanda limanda (L). Aquat Toxicol 27:71–82

    Article  CAS  Google Scholar 

  • Talley JW, Ghosh U, Tucker SG, Furey JS, Luthy RG (2002) Particle-scale understanding of the bioavailability of PAHs in sediment. Environ Sci Technol 36:477–483

    Article  CAS  Google Scholar 

  • Tam NFY, Ke L, Wang XH, Wong YS (2001) Contamination of polycyclic aromatic hydrocarbons in surface sediments of mangrove swamps. Environ Pollut 114:255–263

    Article  CAS  Google Scholar 

  • Trabelsi S, Driss MR (2005) Polycyclic aromatic hydrocarbons in superficial coastal sediments from Bizerte Lagoon, Tunisia. Mar Pollut Bull 50:344–348

    Article  CAS  Google Scholar 

  • Ullman WJ, Aller RC (1982) Diffusion coefficients in nearshore marine sediments. Limnol Oceanogr 27:552–556

    Article  CAS  Google Scholar 

  • Viret H, Pringault O, Duran R (2006) Impact of zinc and nickel on oxygen consumption of benthic microbial communities assessed with microsensors. Sci Total Environ 367:302–311

    Article  CAS  Google Scholar 

  • Weissenfels WD, Beyer M, Klein J (1990) Degradation of phenanthrene, fluorene and fluoranthene by pure bacterial cultures. Appl Microbiol Biotechnol 32:479–484

    Article  CAS  Google Scholar 

  • Wunsche L, Bruggemann L, Babel W (1995) Determination of substrate utilization patterns of soil microbial communities—an approach to assess population-changes after hydrocarbon pollution. FEMS Microbiol Ecol 17:295–305

    Article  Google Scholar 

  • Yu KSH, Wong AHY, Yau KWY, Wong YS, Tam NFY (2005) Natural attenuation, biostimulation and bioaugmentation on biodegradation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments. Mar Pollut Bull 51:1071–1077

    Article  CAS  Google Scholar 

  • Zhang SY, Wang QF, Xie SG (2011) Microbial community changes in contaminated soils in response to phenanthrene amendment. Int J Environ Sci Technol 8:321–330

    CAS  Google Scholar 

  • Zhou HW, Wong AHY, Yu RMK, Park YD, Wong YS, Tam NFY (2009) Polycyclic aromatic hydrocarbon-induced structural shift of bacterial communities in mangrove sediment. Microb Ecol 58:153–160

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a funding of the CMCU (n° 09G 0189) and PHC-Utique (20894TE) programs, the Centre National de la Recherche Scientifique (CNRS/DGRST n°22629), and the Ministère Tunisien de la Recherche scientifique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Pringault.

Additional information

Responsible editor Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Cite this article

Louati, H., Said, O.B., Got, P. et al. Microbial community responses to bioremediation treatments for the mitigation of low-dose anthracene in marine coastal sediments of Bizerte lagoon (Tunisia). Environ Sci Pollut Res 20, 300–310 (2013). https://doi.org/10.1007/s11356-012-0860-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-012-0860-x

Keywords

Navigation