Skip to main content
Log in

Nutrient Limitation in Surface Waters of the Oligotrophic Eastern Mediterranean Sea: an Enrichment Microcosm Experiment

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The growth rates of planktonic microbes in the pelagic zone of the Eastern Mediterranean Sea are nutrient limited, but the type of limitation is still uncertain. During this study, we investigated the occurrence of N and P limitation among different groups of the prokaryotic and eukaryotic (pico-, nano-, and micro-) plankton using a microcosm experiment during stratified water column conditions in the Cretan Sea (Eastern Mediterranean). Microcosms were enriched with N and P (either solely or simultaneously), and the PO4 turnover time, prokaryotic heterotrophic activity, primary production, and the abundance of the different microbial components were measured. Flow cytometric and molecular fingerprint analyses showed that different heterotrophic prokaryotic groups were limited by different nutrients; total heterotrophic prokaryotic growth was limited by P, but only when both N and P were added, changes in community structure and cell size were detected. Phytoplankton were N and P co-limited, with autotrophic pico-eukaryotes being the exception as they increased even when only P was added after a 2-day time lag. The populations of Synechococcus and Prochlorococcus were highly competitive with each other; Prochlorococcus abundance increased during the first 2 days of P addition but kept increasing only when both N and P were added, whereas Synechococcus exhibited higher pigment content and increased in abundance 3 days after simultaneous N and P additions. Dinoflagellates also showed opportunistic behavior at simultaneous N and P additions, in contrast to diatoms and coccolithophores, which diminished in all incubations. High DNA content viruses, selective grazing, and the exhaustion of N sources probably controlled the populations of diatoms and coccolithophores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Karl DM (2007) Microbial oceanography: paradigms, processes and promise. Nature 5:759–769

    CAS  Google Scholar 

  2. Azov Y (1991) Eastern Mediterranean—a marine desert? Mar Poll Bull 23:225–232

    Article  Google Scholar 

  3. Moutin T, Raimbault P (2002) Primary production, carbon export and nutrients availability in western and eastern Mediterranean Sea in early summer 1996 (MINOS cruise). J Mar Syst 33–34:273–288. doi:10.1016/S0924-7963(02)00062-3

    Article  Google Scholar 

  4. Krom MD, Emeis KC, Van Cappellen P (2010) Why is the Eastern Mediterranean phosphorus limited? Prog Oceanogr 85:236–244. doi:10.1016/j.pocean.2010.03.003

    Article  Google Scholar 

  5. Turley CM, Bianchi M, Christaki U, Conan P, Harris JRW, Psarra S, Ruddy G, Stutt ED, Tselepides A, Van Wambeke F (2000) Relationship between primary producers and bacteria in an oligotrophic sea—the Mediterranean and biogeochemical implications. Mar Ecol Prog Ser 193:11–18

    Article  CAS  Google Scholar 

  6. Moutin T, Thingstad TF, Van Wambeke F, Marie D, Slawyk G, Raimbault P (2002) Does competition for nanomolar phosphate supply explain the predominance of the cyanobacterium Synechococcus? Limnol Oceanogr 47(5):1562–1567

    Article  CAS  Google Scholar 

  7. Krom MD, Herut B, Mantoura RFC (2004) Nutrient budget for the Eastern Mediterranean: implications for phosphorus limitation. 49:1582–1592. doi: 10.4319/lo.2004.49.5.1582

  8. Wassmann P, Ypma JE, Tselepides A (2000) Vertical flux of faecal pellets and microplankton on the shelf of the oligotrophic Cretan Sea (NE Mediterranean Sea). Prog Oceanogr 46:241–258. doi:10.1016/S0079-6611(00)00021-5

    Article  Google Scholar 

  9. Hartmann M, Grob C, Tarran GA, Martin AP, Burkill PH, Scalan DJ, Zubkov VM (2012) Mixotrophic basis of Atlantic oligotrophic ecosystems. Proc Natl Acad Sci USA 109(15):5756–5760.11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fouilland E, Mostajir B (2010) Revisited phytoplanktonic carbon dependency of heterotrophic bacteria in freshwaters, transitional, coastal and oceanic water. FEMS Microbiol Ecol 73:419–429. doi:10.1073/pnas.1118179109

    Article  CAS  PubMed  Google Scholar 

  11. Fouilland E, Mostajir B (2010) Revisited phytoplanktonic carbon dependency of heterotrophic bacteria in freshwaters, transitional, coastal and oceanic waters. FEMS Microbiol Ecol 73:419–429. doi:10.1111/j.1574-6941.2010.00896.x

    Article  CAS  PubMed  Google Scholar 

  12. Koch AL (1996) What size should a bacterium be? A question of scale. Annu Rev Microbiol 50:317–348. doi:10.1146/annurev.micro.50.1.317

    Article  CAS  PubMed  Google Scholar 

  13. Tanaka T, Thingstad TF, Christaki U, Colombet J, Cornet-Barthaux V, Courties C, Grattepanche J-D, Lagaria A, Nedoma J, Oriol L, Psarra S, Pujo-Pay M, Van Wambeke F (2011) Lack of P-limitation of phytoplankton and heterotrophic prokaryotes in surface waters of three anticyclonic eddies in the stratified Mediterranean Sea. Biogeosciences 8:525–538

    Article  CAS  Google Scholar 

  14. Gilbert JA, Thomas S, Cooley NA, Kulakova A, Field D, Booth T, McGrath JW, Quinn JP, Joint I (2009) Potential for phosphonoacetate utilization by marine bacteria in temperate coastal waters. Environ Microbiol 11(1):111–125. doi:10.1111/j.1462-2920.2008.01745.x

    Article  CAS  PubMed  Google Scholar 

  15. Zohary T, Robarts RD (1998) Experimental study of microbial P limitation in the eastern Mediterranean. Limnol Oceanogr 43:387–395. doi:10.4319/lo.1998.43.3.0387

    Article  CAS  Google Scholar 

  16. Thingstad TF, Krom MD, Mantoura RFC, Flaten GAF, Groom S, Herut B, Law CS, Pasternak A, Pitta P, Psarra S, Rassoulzadegan F, Tanaka T, Tselepides A, Wassmann P, Woodward EMS, Wexels Riser C, Zodiatis G, Zohary T (2005) Nature of phosphorus limitation in the ultraoligotrophic Eastern Mediterranean. Science 309:1068–1071. doi:10.1126/science.1112632

    Article  CAS  PubMed  Google Scholar 

  17. Zohary T, Herut B, Krom MD, Mantoura, RFC, Pitta P, Psarra S, Rassoulzadegan F, Stambler N, Tanaka T, Thingstad TF, Woodward EMS (2005) P-limited but N and P co-limited phytoplankton in the Eastern Mediterranean—a microcosm experiment. Deep Sea Res Part 2 Top Stud Oceanogr 52:3011–3023. doi: 10.1016/j.dsr2.2005.08.011

  18. Kirchman D (1994) The uptake of inorganic nutrients by heterotrophic bacteria. Microb Ecol 28:255–271

    Article  CAS  PubMed  Google Scholar 

  19. Sebastián M, Gasol JM (2013) Heterogeneity in the nutrient limitation of different bacterioplankton groups in the Eastern Mediterranean Sea. ISME J 7:1665–8. doi:10.1038/ismej.2013.42

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sala MM, Peters F, Gasol JM, Pedrós-Alió C, Marrasé C, Vaqué D (2002) Seasonal and spatial variations in the nutrient limitation of bacterioplankton growth in the northwestern Mediterranean. Aquat Microb Ecol 27:47–56. doi:10.3354/ame027047

    Article  Google Scholar 

  21. Van Wambeke F, Christaki U, Giannakourou A, Moutin T, Souvemerzoglou K (2002) Longitudinal and vertical trends of bacterial limitation by phosphorus and carbon in the Mediterranean Sea. Microbial Ecol 43:119–133. doi:10.1007/s00248-001-0038-4

    Article  Google Scholar 

  22. Pinhassi J, Gómez-Consarnau L, Alonso-Sáez L, Sala MM, Vidal M, Pedrós-Alió C, Gasol JM (2006) Seasonal changes in bacterioplankton nutrient limitation and their effects on bacterial community composition in the NW Mediterranean Sea. Aquat Microb Ecol 44:241–252. doi:10.3354/ame044241

    Article  Google Scholar 

  23. Thingstad TF (2000) Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol Oceanogr 45(6):1320–1328. doi:10.4319/lo.2000.45.6.1320

    Article  Google Scholar 

  24. Gifford SM, Sharma S, Booth M, Moran MA (2012) Expression patterns reveal niche diversification in a marine microbial assemblage. ISME J 7:281–298. doi:10.1038/ismej.2012.96

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ivančič I, Deggobis D (1984) An optimal manual procedure for ammonia analysis in natural waters by the indophenol blue method. Water Res 18:1143–1147. doi:10.1016/0043-1354(84)90230-6

    Article  Google Scholar 

  26. Strickland JDH, Parsons TR (1972) Determination of phosphorus. In: Strickland JDH, Parsons TR (eds) A practical handbook of seawater analysis, 2nd ed, Bulletin No 167. Fisheries Research Board of Canada, Ottawa

    Google Scholar 

  27. Thingstad TF, Skjoldal EF, Bohne RA (1993) Phosphorus cycling and algal-bacterial competition in Sandsfjord, western Norway. Mar Ecol Prog Ser 99:239–259. doi:10.3354/meps099239

    Article  CAS  Google Scholar 

  28. Kirchman DEK (2001) Measuring bacterial biomass production and growth rates from leucine incorporation in natural aquatic environments, p. 227–237. In: Paul JH (ed), Marine microbiology. Methods in microbiology, vol 30, St Petersburg, Florida, USA.

  29. Smith S, Azam F (1992) A simple economical method for measuring bacterial protein synthesis rates using 3H leucine. Marine Microbial Food Webs 6:170–114

    Google Scholar 

  30. Fukuda R, Ogawa H, Nagata T, Koike I (1998) Direct determination of carbon and nitrogen contents of natural bacterial assemblages in marine environments. Appl Environ Microb 64(9):3352–3358

    CAS  Google Scholar 

  31. Steemann Nielsen E (1952) The use of radioactive carbon (14C) for measuring organic production in the sea. Jour Conseil 18:117–140

    Article  Google Scholar 

  32. Copin-Montegut C (1993) Alkalinity and carbon budgets in the Mediterranean sea. Global Biogeochem Cy 4:915–925

    Article  Google Scholar 

  33. Marie D, Brussaard CPD, Thyrhaug R, Bratbak G, Vaulot D (1999) Enumeration of marine viruses in culture and natural samples by flow cytometry. Appl Environ Microb 65(1):45–52

    CAS  Google Scholar 

  34. Marie D, Partensky F, Jacquet S, Vaulot D (1997) Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Appl Environ Microbiol 63:186–193

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Utermöhl H (1958) Zur Vervollkommung der quantitativen phytoplankton methodik. Mitt Internat Verein Limnol 9:1–38

    Google Scholar 

  36. Massana R, Murray AE, Preston CM, DeLong EF (1997) Vertical distribution and phylogenetic characterization of marine planktonic Archaea in the Santa Barbara Channel. Appl Environ Microbiol 63(1):50–56

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Fodelianakis S, Pitta P, Thingstad TF, Kasapidis P, Karakassis I, Ladoukakis ED (2014) Phosphate addition has minimal short-term effects on bacterioplankton community structure of the P-starved Eastern Mediterranean. Aquat Microb Ecol 72:98–104. doi:10.3354/ame01693

    Article  Google Scholar 

  38. Fodelianakis S, Papageorgiou N, Karakassis I, Ladoukakis ED (2015) Community structure changes in sediment bacterial communities along an organic enrichment gradient associated with fish farming. Ann Microbiol 65:331–338. doi:10.1007/s13213-014-0865-4

    Article  CAS  Google Scholar 

  39. Taub FB (1997) Unique information contributed by multispecies systems: examples from the standardized aquatic microcosm. Ecol Appl 7(4):1103–1110

    Article  Google Scholar 

  40. Siokou-Frangou I, Christaki U, Mazzocchi MG, Montresor M, Ribera d’ Alcalá M, Vaqué D, Zingone A (2010) Plankton in the open Mediterranean Sea: a review. Biogeosciences 7:1543–1586. doi:10.5194/bg-7-1543-201

    Article  Google Scholar 

  41. Moutin T, Karl DM, Duhamel S, Rimmelin P, Raimbault P, Van Mooy BAS, Claustre H (2008) Phosphate availability and the ultimate control of new nitrogen input by nitrogen fixation in the tropical Pacific Ocean. Biogeosci Discuss 4:2407–2440. doi:10.5194/bgd-4-2407-2007

    Article  Google Scholar 

  42. Pitta P, Stambler N, Tanaka T, Zohary T, Tselepides A, Rassoulzadegan F (2005) Biological response to P addition in the Eastern Mediterranean Sea. The microbial race against time. Deep Res Part II Top Stud Oceanogr 52:2961–2974. doi:10.1016/j.dsr2.2005.08.012

    Article  CAS  Google Scholar 

  43. Chin-Leo G, Kirchman DL (1990) Unbalanced growth in natural assemblages of marine bacterioplankton. Mar Ecol Prog Ser 63:1–8. doi:10.3354/meps063001

    Article  Google Scholar 

  44. Gasol JM, Alonso-Sáez L, Vaqué D, Baltar F, Calleja ML, Duarte CM, Arístegui J (2009) Mesopelagic prokaryotic bulk and single-cell heterotrophic activity and community composition in the NW Africa-Canary Islands coastal-transition zone. Prog Oceanogr 83:189–196. doi:10.1016/j.pocean.2009.07.014

    Article  Google Scholar 

  45. Gasol JM, Zweifel UL, Peters F, Fuhrman JA, Hangstrom Å (1999) Significance of size and nucleic acid content heterogeneity as measured by flow cytometry in natural plankton bacteria. Appl Environ Microb 65(10):4475–4483

    CAS  Google Scholar 

  46. Bonilla-Findji O, Herndl GJ, Gattuso J-P, Weinbauer G (2009) Viral and flagellate control of prokaryotic production and community structure in offshore Mediterranean waters. Appl Environ Microb 75(14):4801–4812. doi:10.1128/AEM.01376-08

    Article  CAS  Google Scholar 

  47. Ovreås L, Bourne D, Sandaa R-A, Casamayor EO, Benlloch S, Goddard V, Smerdon G, Heldal M, Thingstad TF (2003) Response of bacterial and viral communities to nutrient manipulations in seawater mesocosms. Aquat Microb Ecol 31:109–121. doi:10.3354/ame031109

    Article  Google Scholar 

  48. Sebastián M, Pitta P, González JM, Thingstad TF, Gasol JM (2012) Bacterioplankton groups involved in the uptake of phosphate and dissolved organic phosphorus in a mesocosm experiment with P-starved Mediterranean waters. Environ Microbiol 14:2334–2347. doi:10.1111/j.1462-2920.2012.02772.x

    Article  PubMed  Google Scholar 

  49. Mills MM, Moore CM, Langlois R, Milne A, Achterberg E, Nachtigall K, Lochte K, Geider RJ, La Roche J (2008) Nitrogen and phosphorus co-limitation of bacterial productivity and growth in the oligotrophic subtropical North Atlantic. Limnol Oceanogr 53(2):824–834. doi:10.4319/lo.2008.53.2.0824

    Article  CAS  Google Scholar 

  50. Martin P, Dyhrman ST, Lomas MW, Poulton NJ, Van Mooy BAS (2014) Accumulation and enhanced cycling of polyphosphate by Sargasso Sea plankton in response to low phosphorus. Proc Natl Acad Sci U S A 111(22):8089–8094. doi:10.1073/pnas.1321719111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Matz C, Jürgens K (2003) Interaction of nutrient limitation and protozoan grazing determines the phenotypic structure of a bacterial community. Microb Ecol 45:384–398. doi:10.1007/s00248-003-2000-0

    Article  CAS  PubMed  Google Scholar 

  52. Tammert H, Lignell R, Kisand V, Olli K (2012) Labile carbon supplement induces growth of filamentous bacteria in the Baltic Sea. Aquat Biol 15:121–134. doi:10.3354/ab00424

    Article  Google Scholar 

  53. Krom MD, Thingstad TF, Brenner S, Carbo P, Drakopoulos P, Fileman TW, Flaten GAF, Groom S, Herut B, Kitidis V, Kress N, Law CS, Liddicoat MI, Mantoura RFC, Pasternak A, Pitta P, Polychronaki T, Psarra S, Rassoulzadegan F, Skjoldal EF, Spyres G, Tanaka T, Tselepides A, Wassmann P, Wexels Riser C, Woodward EMS, Zodiatis G, Zohary T (2005) Summary and overview of the CYCLOPS P addition Lagrangian experiment in the Eastern Mediterranean. Deep Res Part II Top Stud Oceanogr 52:3090–3108

    Article  Google Scholar 

  54. Schäfer H, Bernard L, Courties C, Lebaron P, Servais P, Pukall R, Stackebrandt E, Troussellier M, Guindulain T, Vives-Rego J, Muyzer G (2001) Microbial community dynamics in the Mediterranean nutrient-enriched sweater mesocosms: changes in the genetic diversity of bacterial populations. FEMS Microbiol Ecol 34:243–253

    Article  PubMed  Google Scholar 

  55. Cleary FR, Smalla K, Mendonca-Hagler LCS, Gomes NCM (2012) Assessment of variation in bacterial composition among microhabitats in a mangrove environment using DGGE fingerprint and barcoded pyrosequencing. PLoS 7(1):1–8. doi:10.1371/journal.pone.0029380

    Google Scholar 

  56. Joint I, Henriksen P, Fonnes GA, Bourne D, Thingstad TF, Riemann B (2002) Competition for inorganic nutrients between phytoplankton and bacterioplankton in nutrient manipulated mesocosms. Aquat Microb Ecol 29:145–159

    Article  Google Scholar 

  57. Psarra S, Zohary T, Krom MD, Mantoura FC, Polychronaki T, Stambler N, Tanaka T, Tselepides A, Thingstad TF (2005) Phytoplankton response to a Lagrangian phosphate addition in the Levantine Sea (Eastern Mediterranean). Deep Res Part II Top Stud Oceanogr 52:2944–2960

    Article  CAS  Google Scholar 

  58. Vaulot D, Nebot N, Marie D, Fukai E (1996) Effect of phosphorus on the Synechococcus cell cycle in surface Mediterranean waters during summer. Appl Environ Microb 62(7):2527–2533

    CAS  Google Scholar 

  59. Lasternas S, Agustí S, Duarte CM (2010) Phyto- and bacterioplankton abundance and viability and their relationship with phosphorus across the Mediterranean Sea. Aquat Microb 60:175–191. doi:10.3354/ame01421

    Article  Google Scholar 

  60. Tanaka T, Rassoulzadegan F, Thingstad TF (2003) Measurements of phosphate affinity constants and phosphorus release rates from the microbial food web in Villefranche Bay, northwestern Mediterranean. Limnol Oceanogr 48(3):1150–1160. doi:10.4319/lo.2003.48.3.1150

    Article  CAS  Google Scholar 

  61. Dolan JR, Thingstad TF, Rassoulzadegan F (1996) Phosphorus transfer between microbial size-fractions in Villefranche Bay (North Western Mediterranean Sea), France, in autumn 1992. Ophelia 41(1):15–22

    Google Scholar 

  62. Arrieta J, Herndl GJ (2002) Changes in bacterial β-glucosidase diversity during a coastal phytoplankton bloom. Limnol Oceanogr 47:594–599. doi:10.4319/lo.2002.47.2.0594

    Article  CAS  Google Scholar 

  63. Allen AE, Dupont CL, Oborník M, Horák A, Nunes-Nesi A, McCrow JP, Zheng H, Johnson DA, Hu H, Fernie AR, Bowler C (2011) Evolution and metabolic significance of the urea cycle in photosynthetic diatoms. Nature 473:203–209

    Article  CAS  PubMed  Google Scholar 

  64. Kang HK, Poulet S, Ju SJ (2007) Direct examination of the dietary preference of the copepod Calanus helgolandicus using the colorimetric approach. Ocean Sci J 42(3):193–197. doi:10.1007/BF03020923

    Article  Google Scholar 

  65. Brussaard CPD, Short SM, Frederickson CM, Suttle CA (2004) Isolation and phylogenetic analysis of novel viruses infecting the phytoplankton Phaeocystis globosa (Prymnesiophyceae). Appl Environ Microb 70(6):3700–3705. doi:10.1128/AEM.70.6.3700-3705.2004

    Article  CAS  Google Scholar 

  66. Wilson WH, Mann NH (1997) Lysogenic and lytic viral production in marine microbial communities. Aquat Microb Ecol 13:95–100. doi:10.3354/ame013095

    Article  Google Scholar 

  67. Boras JA, Sala MM, Vázquez-Domínguez E, Weinbauer MG, Vaqué D (2009) Annual changes of bacterial mortality due to viruses and protists in an oligotrophic coastal environment (NW Mediterranean). Environ Microbiol 11(5):1181–1193

    Article  CAS  PubMed  Google Scholar 

  68. Tantanasarit C, Englade AJ, Babel S (2013) Nitrogen, phosphorus and silicon uptake kinetics by marine diatom Chaetoceros calcitrans under high nutrient concentrations. J Exp Mar Biol Ecol 446:67–75

    Article  CAS  Google Scholar 

  69. Agawin NSR, Duarte CM, Agustí S (2000) Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnol Oceanogr 45:591–600. doi:10.4319/lo.2000.45.3.0591

    Article  CAS  Google Scholar 

  70. Töpper B, Thingstad TF, Sandaa RA (2013) Effects of differences in organic supply on bacterial diversity subject to viral lysis. FEMS Microbiol Ecol 83(1):202–213. doi:10.1111/j.1574-6941.2012.01463.x

    Article  PubMed  Google Scholar 

  71. Sundareshwar PV, Morris JT, Koepfler EK, Fornwalt B (2003) Phosphorus limitation of coastal ecosystem processes. Science 299:563–565. doi:10.1126/science.1079100

    Article  CAS  PubMed  Google Scholar 

  72. Guerzoni S, Chester R, Dulac F, Herut B, Loye-Pilot M-D, Measures C, Migon C, Molinaroli E, Moulin C, Rossini P, Saydam C, Soudine A, Ziveri P (1999) The role of atmospheric deposition in the biogeochemistry of the Mediterranean Sea. Prog Oceanogr 44:147–190.71

    Article  Google Scholar 

  73. Carlsson P, Granéli E, Granéli W, Gonzalez Rodriguez E, Fernandes de Carvallo W, Brutemark A, Lindehoff E (2012) Bacterial and phytoplankton nutrient limitation in tropical marine waters, and a coastal lake in Brazil. J Exp Mar Biol Ecol 418–419:37–45. doi:10.1016/j.jembe.2012.03.012

    Article  Google Scholar 

  74. Duarte CM, Agustí S, Gasol JM, Vaqué D, Vazquez-Dominguez E (2000) Effect of nutrient supply on the biomass structure of planktonic communities: an experimental test on a Mediterranean coastal community. Mar Ecol Prog Ser 206:87–95. doi:10.3354/meps206087

    Article  Google Scholar 

  75. Lekunberri I, Lefort T, Romero E, Vázquez-Domínguez E, Romera-Castillo C, Marrasé C, Peters F, Weinbauer M, Gasol JM (2010) Effects of a dust deposition event on coastal marine microbial abundance and activity, bacterial community structure and ecosystem function. J Plankton Res 32(4):381–396

    Article  CAS  Google Scholar 

  76. Pulido-Villena E, Baudoux A-C, Obernosterer I, Landa M, Caparros J, Catala P, Georges C, Harmand J, Guieu C (2014) Microbial food web dynamics in response to a Saharan dust event: results from a mesocosm study in the oligotrophic Mediterranean Sea. Biogeosciences 11:5607–5619

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the European Union Framework Program (FP7/2007–2013), grant agreement No. 228224, MESOAQUA project. We thank the captain and the crew of R/V Philia, as well as Panagiotis Vavilis and Dimitris Apostolakis, for their help at sea. We also wish to thank Frede T. Thingstad for his suggestions on the experimental design, as well as Tatiana M. Tsagaraki for her invaluable support in microcosm assembling and advice on statistical analysis. Thanks are also due to Snezana Zivanovic and Eleni Dafnomili for conducting nutrient analyses and Ioannis Tsakalakis for help with primary production measurements. Finally, we thank Sebastian Mas, Emilie Le Floc’h, and other members of MEDIMEER and ECOSYM teams for the installation and running of the mesocosm experiment on the new transportable floating in situ mesocosm platform with autonomous sensors deployed in the Cretan Sea in September 2011, simultaneously to the present investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Tsiola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsiola, A., Pitta, P., Fodelianakis, S. et al. Nutrient Limitation in Surface Waters of the Oligotrophic Eastern Mediterranean Sea: an Enrichment Microcosm Experiment. Microb Ecol 71, 575–588 (2016). https://doi.org/10.1007/s00248-015-0713-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-015-0713-5

Keywords

Navigation