Skip to main content

Advertisement

Log in

Responses of a free-living benthic marine nematode community to bioremediation of a PAH mixture

  • DECAPAGE Project: Hydrocarbon degradation in coastal sediments*
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The objectives of this study were (1) to assess the responses of benthic nematodes to a polycyclic aromatic hydrocarbon (PAH) contamination and (2) to test bioremediation techniques for their efficiency in PAH degradation and their effects on nematodes. Sediments with their natural nematofauna communities from Bizerte lagoon (Tunisia) were subjected to a PAH mixture (100 ppm) of phenanthrene, fluoranthene, and pyrene during 30 days. Nematode abundance and diversity significantly decreased, and the taxonomic structure was altered. Results from multivariate analyses of the species abundance data revealed that PAH treatments were significantly different from the control. Spirinia parasitifera became the dominant species (70 % relative abundance) and appeared to be an “opportunistic” species to PAH contamination while Oncholaimus campylocercoides and Neochromadora peocilosoma were strongly inhibited. Biostimulation (addition of mineral salt medium) and bioaugmentation (inoculation of a hydrocarbonoclastic bacterium) were used as bioremediation techniques. Bioremediation treatments enhanced degradation of all three PAHs, with up to 96 % degradation for phenanthrene resulting in a significant stimulation of nematode abundance relative to control microcosms. Nevertheless, these treatments, especially the biostimulation provoked a weak impact on the community structure and diversity index relative to the control microcosms suggesting their feasibility in biorestoration of contaminated sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Austen MC, McEvoy AJ (1997) The use of offshore meiobenthic communities in laboratory microcosm experiments: response to heavy metal contamination. J Exp Mar Biol Ecol 211:247–261

    Article  CAS  Google Scholar 

  • Austen MC, McEvoy AJ, Warwick RM (1994) The specificity of meiobenthic community responses to different pollutants: results from microcosm experiments. Mar Pollut Bull 28:557–563

    Article  CAS  Google Scholar 

  • Barata C, Calbet A, Saiz E, Ortiz L, Bayona JM (2005) Predicting single and mixture toxicity of petrogenic polycyclic aromatic hydrocarbons to the copepod Oithona davisae. Environ Toxicol Chem 24:2992–2999

    Article  CAS  Google Scholar 

  • Barhoumi B, LeMenach K, Devier MH, El Megdiche Y, Hammami B, Ben Ameur W, Ben Hassine S, Cachot J, Budzinski H, Driss MR (2014) Distribution and ecological risk of polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in surface sediments from the Bizerte lagoon, Tunisia. Environ Sci Poll Res 21:6290–6302

    Article  CAS  Google Scholar 

  • Bejarano AC, Chandler GT, He L, Coull BC (2006) Individual to population level effects of South Louisiana crude oil water accommodated hydrocarbon fraction (WAF) on a marine meiobenthic copepod. J Exp Mar Biol Ecol 332:49–59

    Article  CAS  Google Scholar 

  • Ben Said O, Goni-Urriza MS, El Bour M, Dellali M, Aissa P, Duran R (2008) Characterization of aerobic polycyclic aromatic hydrocarbon-degrading bacteria from Bizerte lagoon sediments, Tunisia. J Appl Microbiol 104:987–997

    Article  CAS  Google Scholar 

  • Beyrem H, Mahmoudi E, Essid N, Hedfi A, Boufahja F, Aissa P (2007) Individual and combined effects of cadmium and diesel on a nematode community in a laboratory microcosm experiment. Ecotoxicol Environ Saf 68:412–418

    Article  CAS  Google Scholar 

  • Beyrem H, Louati H, Essid N, Aissa P, Mahmoudi E (2010) Effects of two lubricant oils on marine nematode assemblages in a laboratory microcosm experiment. Mar Environ Res 69:248–253

    Article  CAS  Google Scholar 

  • Boitsov S, Jensen HKB, Klungsoyr J (2009) Natural background and anthropogenic inputs of polycyclic aromatic hydrocarbons (PAH) in sediments of south-western Barents Sea. Mar Environ Res 68:236–245

    Article  CAS  Google Scholar 

  • Bordenave S, Goñi-Urriza M, Vilette C, Blanchard S, Caumette P, Duran R (2008) Diversity of ring-hydroxylating dioxygenases in pristine and oil contaminated microbial mats at genomic and transcriptomic levels. Environ Microbiol 10:3201–3211

    Article  CAS  Google Scholar 

  • Boufahja F, Sellami B, Dellali M, Aissa P, Mahmoudi E, Beyrem H (2011) A microcosm experiment on the effects of permethrin on a free-living nematode assemblage. Nematology 13:901–909

    Article  CAS  Google Scholar 

  • Brion D, Pelletier E (2005) Modelling PAHs adsorption and sequestration in freshwater and marine sediments. Chemosphere 61:867–876

    Article  CAS  Google Scholar 

  • Carman KR, Fleeger JW, Pomarico SM (2000) Does historical exposure to hydrocarbon contamination alter the response of benthic communities to diesel contamination? Mar Environ Res 49:255–278

    Article  CAS  Google Scholar 

  • Carpenter S (1996) Microcosm experiments have limited relevance for community and ecosystem ecology. Ecology 77:677–680

    Article  Google Scholar 

  • Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368

    Article  CAS  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  • Clarke KR, Warwick RM (2001) Changes in marine communities: an approach to statistical analysis and interpretation. PRIMER-E, Plymouth

    Google Scholar 

  • Cravo-Laureau C, Duran R (2014) Marine coastal sediments microbial hydrocarbon degradation processes: contribution of experimental ecology in the omics’era. Front Microbiol 5:8

    Google Scholar 

  • Deprez T, Merckx B, Vincx M (2005) Online identification of Mysida through NeMys. In: Mees J et al (eds) VLIZ young scientists’ day. VLIZ Special Publication, Bruges, p 31

    Google Scholar 

  • Engelmann HD (1973) Undersuchangen zur erfassung pedozoogener componentin difinicten okosystem, forschungober, Staatl.Mus.Naturkde, Gorlitz. J Acta Hydrobiol 23:349–361

  • Eyualem A, Andrassy I, Traunspurger W (2006) Freshwater nematodes: ecology and taxonomy. CABI Publishing, Cambridge

    Book  Google Scholar 

  • Gewurtz S, Lazar R, Haffner G (2000) Comparison of polycyclic aromatic hydrocarbon and polychlorinated dynamics in benthic invertebrates of Lake Erie, USA. Environ Toxicol Chem 19:2943–2950

    Article  CAS  Google Scholar 

  • Goni-Urriza M, Cravo-Laureau C, Duran R (2013) Microbial bioremediation of aquatic environments encyclopedia of aquatic ecotoxicology. Springer, Dordrecht

    Google Scholar 

  • Guo Y, Somerfield PJ, Warwick RM, Zhang Z (2001) Large-scale patterns in the community structure and biodiversity of free living nematodes in the Bohai Sea, China. J Mar Biol Assoc UK 81:755–763

    Article  Google Scholar 

  • Gyedu-Ababio TK, Baird D (2006) Response of meiofauna and nematode communities to increased levels of contaminants in a laboratory microcosm experiment. Ecotoxicol Environ Saf 63:443–450

    Article  CAS  Google Scholar 

  • Head IM, Jones DM, Roling WFM (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4:173–182

    Article  CAS  Google Scholar 

  • Hedfi A, Mahmoudi E, Boufahja F, Beyrem H, Aissa P (2007) Effects of increasing levels of nickel contamination on structure of offshore nematode communities in experimental microcosms. Bull Environ Contam Toxicol 79:345–349

    Article  CAS  Google Scholar 

  • Hedfi A, Boufahja F, Ben Ali M, Aissa P, Mahmoudi E, Beyrem H (2013) Do trace metals (chromium, copper, and nickel) influence toxicity of diesel fuel for free-living marine nematodes? Environ Sci Poll Res 20:3760–3770

    Article  CAS  Google Scholar 

  • Heip C, Vincx M, Vranken G (1985) The ecology of marine nematodes. Oceanogr Mar Biol 23:399–489

    Google Scholar 

  • Hughes JB, Beckles DM, Chandra SD, Ward CH (1997) Utilization of bioremediation processes for the treatment of PAH contaminated sediments. J Ind Microbiol Biot 18:152–160

    Article  CAS  Google Scholar 

  • Isaac P, Sanchez LA, Nea B (2013) Indigenous PAH-degrading bacteria from oil-polluted sediments in Caleta Cordova, Patagonia Argentina. Int Biodeterior Biodegrad 82:207–214

    Article  Google Scholar 

  • Jacques RJS, Okeke BC, Bento FM, Teixeira AS, Peralba MCR, Camargo FAO (2008) Microbial consortium bioaugmentation of a polycyclic aromatic hydrocarbons contaminated soil. Bioresour Technol 99:2637–2643

    Article  CAS  Google Scholar 

  • Juhasz AL, Naidu R (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. Int Biodeterior Biodegrad 45:57–88

    Article  CAS  Google Scholar 

  • Lambshead PJD, Platt HM, Shaw KM (1983) The detection of differences among assemblages of marine benthic species based on an assessment of dominance and diversity. J Nat Hist 17:859–874

    Article  Google Scholar 

  • Landrum PF, Frez WA, Simmons MS (1992) Relationship of toxicokinetic parameters to respiration rates in Mysis relicta. J Great Lakes Res 18:331–339

    Article  CAS  Google Scholar 

  • Lei AP, Hu Z-L, Wong Y-S, Tam N (2007) Removal of fluoranthene and pyrene by different microalgal species. Bioresour Technol 98:273–280

    Article  CAS  Google Scholar 

  • Leite DS, Sandrini-Neto L, Camargo MZ, Thomas MC, Lana PC (2014) Are changes in the structure of nematode assemblages reliable indicators of moderate petroleum contamination? Mar Pollut Bull 83:38–47

    Article  CAS  Google Scholar 

  • Lindgren JF, Hassellov IM, Dahllof I (2012) Meiofaunal and bacterial community response to diesel additions in a microcosm study. Mar Pollut Bull 64:595–601

    Article  CAS  Google Scholar 

  • Louati A, Elleuch B, Kallel M, Saliot A, Dagaut J, Oudot J (2001) Hydrocarbon contamination of coastal sediments from the Sfax area (Tunisia), Mediterranean Sea. Mar Pollut Bull 42:445–452

    Article  CAS  Google Scholar 

  • Louati H, Ben Said O, Got P, Soltani A, Mahmoudi E, Cravo-Laureau C, Duran R, Aissa P, Pringault O (2013a) Microbial community responses to bioremediation treatments for the mitigation of low-dose anthracene in marine coastal sediments of Bizerte lagoon (Tunisia). Environ Sci Poll Res 20:300–310

    Article  CAS  Google Scholar 

  • Louati H, Ben Said O, Soltani A, Got P, Mahmoudi E, Cravo-Laureau C, Duran R, Aissa P, Pringault O (2013b) Roles of biological interactions and pollutant contamination in shaping microbial benthic community structure. Chemosphere 93:2535–2546

    Article  CAS  Google Scholar 

  • Louati H, Ben Said O, Soltani A, Cravo-Laureau C, Preud’Homme H, Duran R, Aissa P, Mahmoudi E, Pringault O (2014a) Impact of low dose anthracene contamination on the diversity of free-living marine benthic nematodes. Ecotoxicology 23:201–212

    Article  CAS  Google Scholar 

  • Louati H, Ben Said O, Soltani A, Got P, Cravo-Laureau C, Duran R, Aissa P, Pringault O, Mahmoudi E (2014b) Biostimulation as an attractive technique to reduce phenanthrene toxicity for meiofauna and bacteria in lagoon sediment. Environ Sci Poll Res 21:3670–3679

    Article  CAS  Google Scholar 

  • Louiz I, Kinani S, Gouze ME, Ben-Attia M, Menif D, Bouchonnet S, Porcher JM, Ben-Hassine OK, Ait-Aissa S (2008) Monitoring of dioxin-like, estrogenic and anti-androgenic activities in sediments of the Bizerta lagoon (Tunisia) by means of in vitro cell-based bioassays: contribution of low concentrations of polynuclear aromatic hydrocarbons (PAHs). Sci Total Environ 402:318–329

    Article  CAS  Google Scholar 

  • Mahmoudi E, Essid N, Beyrem H, Hedfi A, Boufahja F, Vitiello P, Aissa P (2005) Effects of hydrocarbon contamination on a free living marine nematode community: results from microcosm experiments. Mar Pollut Bull 50:1197–1204

    Article  CAS  Google Scholar 

  • Mahmoudi E, Essid N, Beyrem H, Hedfi A, Boufahja F, Vitiello P, Aissa P (2007) Individual and combined effects of lead and zinc on a free-living marine nematode community: results from microcosm experiments. J Exp Mar Biol Ecol 343:217–226

    Article  CAS  Google Scholar 

  • Millward RN, Carman KR, Fleeger JW, Gambrell RP, Portier R (2004) Mixtures of metals hydrocarbons elicit complex responses by a benthic invertebrate community. J Exp Mar Biol Ecol 310:115–130

    Article  CAS  Google Scholar 

  • Miyasaka T, Asami H, Watanabe K (2006) Impacts of bioremediation schemes on bacterial population in naphthalene-contaminated marine sediments. Biodegradation 17:227–235

    Article  CAS  Google Scholar 

  • Moreno M, Albertelli G, Fabiano M (2009) Nematode response to metal, PAHs and organic enrichment in tourist marinas of the Mediterranean sea. Mar Pollut Bull 58:1192–1201

    Article  CAS  Google Scholar 

  • Mzoughi N, Hellal F, Dachraoui M, Villeneuve JP, Cattini C, de Mora SJ, El Abed A (2002) Methodology of extraction of polycyclic aromatic hydrocarbons. Application to sediment from the Bizerte lagoon (Tunisia). C R Geosci 334:893–901

    Article  CAS  Google Scholar 

  • Neff JM (2002) Bioaccumulation in marine organisms. Effects of contaminants from oil well produced water. Elsevier, Amsterdam, p 452

    Google Scholar 

  • Neff JM, Scott AS, Donald GG (2005) Ecological risk assessment of polycyclic aromatic hydrocarbons in sediments: identifying sources and ecological hazard. Int Environ Assess Manag 1:22–33

    Article  CAS  Google Scholar 

  • Paissé S, Goñi-Urriza M, Stadler T, Budzinski H, Duran R (2012) Ring-hydroxylating dioxygenase (RHD) expression in a microbial community during the early response to oil pollution. FEMS Microbiol Ecol 80:77–86

    Article  Google Scholar 

  • Petersen DG, Sundback K, Larson F, Dahllof I (2009) Pyrene toxicity is affected by the nutrient status of a marine sediment community: Implications for risk assessment. Aquat Toxicol 95:37–43

    Article  CAS  Google Scholar 

  • Platt HM, Warwick RM (1983) A synopsis of the free-living marine nematodes. Part I. British enoplids. Cambridge University Press, Cambridge

    Google Scholar 

  • Platt HM, Warwick RM (1988) Free living marine nematodes. In: Brill E, Backhuys W (Editors), British Chromadorids. A Synopsis of the Free-living Marine Nematodes, Leiden

  • Pringault O, Duran R, Jacquet S, Torreton JP (2008) Temporal variations of microbial activity and diversity in marine tropical sediments (New Caledonia lagoon). Microb Ecol 55:247–258

    Article  CAS  Google Scholar 

  • Puente A, Juanes JA, Calderón G, Echavarri-Erasun B, García A, García-Castrillo G (2009) Medium-term assessment of the effects of the prestige oil spill on estuarine benthic communities in Cantabria (northern Spain, Bay of Biscay). Mar Pollut Bull 58:487–495

    Article  CAS  Google Scholar 

  • Ramette A (2007) Multivariate analyses in microbial ecology. FEMS Microbiol Ecol 62:142–160

    Article  CAS  Google Scholar 

  • Seinhorst J (1959) A rapid method for the transfer of nematodes from fixative to anhydrous glycerin. Nematologica 4:67–69

    Article  Google Scholar 

  • Sepic E, Bricelj M, Leskovsek H (2003) Toxicity of fluoranthene and its biodegradation metabolites to aquatic organisms. Chemosphere 52:1125–1133

    Article  CAS  Google Scholar 

  • Sharma SS, Schat H, Vooijs R, Van Heerwaarden LM (1999) Combination toxicology of copper, zinc, and cadmium in binary mixtures: concentration-dependent antagonistic, nonadditive, and synergistic effects on root growth in silene vulgaris. Environ Toxicol Chem 18:348–355

    Article  CAS  Google Scholar 

  • Soclo HH, Garrigues P, Ewald M (2000) Origin of polycyclic aromatic hydrocarbons (PAHs) in coastal marine sediments: case studies in Cotonou (Benin) and Aquitaine (France) areas. Mar Pollut Bull 40:387–396

    Article  CAS  Google Scholar 

  • Stauffert M, Cravo-Laureau C, Jézéquel R, Barantal S, Cuny P, Gilbert F, Cagnon C, Militon C, Amouroux D, Mahdaoui F, Bouyssiere B, Stora G, Merlin F-X, Duran R (2013) Impact of oil on bacterial community structure in bioturbated sediments. PLoS One 8(6):e65347

    Article  CAS  Google Scholar 

  • Stauffert M, Duran R, Gassie C, Cravo-Laureau C (2014) Response of archaeal communities to oil spill in bioturbated mudflat sediments. Microb Ecol 67:108–119

    Article  CAS  Google Scholar 

  • Stringer TJ, Glover CN, Keesing V, Northcott GL, Tremblay LA (2012) Development of a harpacticoid copepod bioassay: selection of species and relative sensitivity to zinc, atrazine and phenanthrene. Ecotoxicol Environ Saf 80:363–371

    Article  CAS  Google Scholar 

  • Swartz RC, Schults DW, Ozretich RJ, Lamberson JO, Cole FA, Dewitt TH, Redmond MS, Ferraro SP (1995) A model to predict the toxicity of polynuclear aromatic hydrocarbon mixtures in field-collected sediments. Environ Toxicol Chem 14:1977–1987

    Article  CAS  Google Scholar 

  • Thompson BAW, Goldsworthy PM, Riddle MJ, Snape I, Stark JS (2007) Contamination effects by a ‘conventional’ and a ‘biodegradable’ lubricant oil on infaunal recruitment to antarctic sediments: a field experiment. J Exp Mar Biol Ecol 340:213–226

    Article  CAS  Google Scholar 

  • Trabelsi S, Driss MR (2005) Polycyclic aromatic hydrocarbons in superficial coastal sediments from Bizerte Lagoon, Tunisia. Mar Pollut Bull 50:344–348

    Article  CAS  Google Scholar 

  • USEPA (2007) United States Environmental Protection Agency: Test Methods for Evaluation of Solid Waste, SW-846, Method 3550C, Ultrasonic Extraction

  • Wang H, Wang C, Lin M, Sun X, Wang C, Hu X (2013) Phylogenetic diversity of bacterial communities associated with bioremediation of crude oil in microcosms. Int Biodeterior Biodegrad 85:400–406

    Article  CAS  Google Scholar 

  • Warwick RM, Clarke KR (1991) A comparison of some methods for analyzing changes in benthic community structure. J Mar Biol Assoc UK 71:225–244

    Article  Google Scholar 

  • Warwick RM, Platt HM, Somerfield PJ (1998) Free-living marine nematodes Part III: Monhysterids. Synopses of the British fauna (new series) 53, Shrewsbury: Field studies council

  • Wieser W (1960) Benthic studies in buzzards Bay. II: the meiofauna. Limnol Oceanogr 5:121–137

    Article  Google Scholar 

  • Yoshida M, Hamadi K, Ghrabi A (2002) Solid waste landfills and soil/sediment contamination around Bizerte lagoon: Possible pollution sources. In: Ghrabi A, Yoshida M (Editors), Study on Environmental Pollution of Bizerte Lagoon. INRST-JICA Publishers, pp. 55 p

  • Yu KSH, Wong AHY, Yau KWY, Wong YS, Tam NFY (2005) Natural attenuation, biostimulation and bioaugmentation on biodegradation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments. Mar Pollut Bull 51:1071–1077

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the CMCU program (PHC-UTIQUE, no. 09G 0189), Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), and the Faculté des Sciences de Bizerte (FSB). Dr. Emma Rochelle-Newall is gratefully acknowledged as native English speaker for her helpful criticisms on an early version of the manuscript and for English corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hela Louati.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Louati, H., Said, O.B., Soltani, A. et al. Responses of a free-living benthic marine nematode community to bioremediation of a PAH mixture. Environ Sci Pollut Res 22, 15307–15318 (2015). https://doi.org/10.1007/s11356-014-3343-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3343-4

Keywords

Navigation