Skip to main content

Advertisement

Log in

Rising the Persian Gulf Black-Lip Pearl Oyster to the Species Level: Fragmented Habitat and Chaotic Genetic Patchiness in Pinctada persica

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Marine organisms with long pelagic larval stages are expected to exhibit low genetic differentiation due to their potential to disperse over large distances. Growing body of evidence, however, suggests that marine populations can differentiate over small spatial scales. Here we focused on black-lip pearl oysters from the Persian Gulf that are thought to belong to the Pinctada margaritifera complex given their morphological affinities. This species complex includes seven lineages that show a wide distribution ranging from the Persian Gulf (Pinctada margaritifera persica) and Indian Ocean (P. m. zanzibarensis) to the French Polynesia (P. m. cumingii) and Hawai’i (P. m. galtsoffi). Despite the long pelagic larval phase of P. m. persica, this lineage is absent from continental locations and can only be found on a few islands of the Persian Gulf. Mitochondrial COI-based analyses indicated that P. m. persica belongs to a clearly divergent ESU and groups with specimens from Mauritius (P. m. zanzibarensis). Microsatellite data, used here to assess the spatial scale of realized dispersal of Persian Gulf black-lip pearl oysters, revealed significant genetic structure among islands distant of only a few dozen kilometres. The scantiness of suitable habitats most likely restricted the distribution of this lineage originating the observed chaotic genetic patchiness. The hatchery-based enhancement performed in one of the sampled islands may also have affected population genetic structure. The long-term accumulation of genetic differences likely resulted from the allopatric divergence between P. m. persica and the neighbouring Indian Ocean black-lip pearl oysters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akaike, H. (1973). Information theory as an extension of the maximum likelihood principle. In B. N. P. F. Csaksi (Ed.), 2nd international symposium on information theory (pp. 267–281). Budapest: Akademiai Kiado.

    Google Scholar 

  • Arnaud-Haond, S., Bonhomme, F., & Blanc, F. (2003a). Large discrepancies in differentiation of allozymes, nuclear and mitochondrial DNA loci in recently founded Pacific populations of the pearl oyster Pinctada margaritifera. Journal of Evolutionary Biology, 16, 388–398.

    Article  PubMed  CAS  Google Scholar 

  • Arnaud-Haond, S., Vonau, V., Bonhomme, F., Boudry, P., Prou, J., Seaman, T., et al. (2003b). Spat collection of the pearl oyster (Pinctada margaritifera cumingii) in French Polynesia: An evaluation of the potential impact on genetic variability of wild and farmed populations after 20 years of commercial exploitation. Aquaculture, 219, 181–192.

    Article  Google Scholar 

  • Arnaud-Haond, S., Vonau, V., Boudry, P., Blanc, F., Prou, J., Seaman, T., & Goyard, E. (2004). Spatio-temporal variation in the genetic composition of wild populations of pearl oyster (Pinctada margaritifera cumingii) in French Polynesia following 10 years of juvenile translocation. Molecular Ecology, 13, 2001–2007.

    Article  PubMed  CAS  Google Scholar 

  • Arnaud-Haond, S., Vonau, V., Rouxel, C., Bonhomme, F., Prou, J., Goyard, E., & Boudry, P. (2008). Genetic structure at different spatial scales in the pearl oyster (Pinctada margaritifera cumingii) in French Polynesian lagoons: Beware of sampling strategy and genetic patchiness. Marine Biology, 155, 147–157.

    Article  Google Scholar 

  • Bassam, B. J., Anollés, G. C., & Gresshoff, P. M. (1991). Fast and sensitive silver staining of DNA in polyacrylamide gels. Analytical Biochemistry, 196, 80–83.

    Article  PubMed  CAS  Google Scholar 

  • Belkhir, K., Borsa, P., Chikhi, L., Raufaste, N., & Bonhomme, F. (1996–2004). GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Montpellier: Université de Montpellier II, Laboratoire Génome, Populations, Interactions, CNRS UMR 5000.

  • Black, W. C., & Krafsur, E. S. (1985). A fortran program for the calculation and analysis of two-locus linkage disequilibrium coefficients. Theoretical and Applied Genetics, 70, 491–496.

    Article  PubMed  Google Scholar 

  • Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.-H., Xie, D., et al. (2014). BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 10(4), e1003537.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cunha, R. L., Blanc, F., Bonhomme, F., & Arnaud-Haond, S. (2011). Evolutionary Patterns in Pearl Oysters of the Genus Pinctada (Bivalvia: Pteriidae). Marine Biotechnology, 13, 181–192.

    Article  PubMed  CAS  Google Scholar 

  • Doyle, J. J., & Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19, 11–15.

    Google Scholar 

  • Drummond, A. J. B. A., Buxton, S., Cheung, M., Cooper, A., Duran, C., Field, M., et al. (2010). Geneious v5.5. http://www.geneious.com. Last accessed March 12, 2012.

  • Drummond, A. J., Ho, S. Y. W., Philips, M. J., & Rambaut, A. (2006). Relaxed phylogenetics and dating with confidence. PLoS Biology, 4(5), e88.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Drummond, A., & Rambaut, A. (2008). Tracer V.1.5. http://beast.bio.ed.ac.uk/Tracer.

  • Drummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29(8), 1969–1973.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Earl, D. A. (2012). STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4(2), 359–361.

    Article  Google Scholar 

  • Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology, 14(8), 2611–2620.

    Article  PubMed  CAS  Google Scholar 

  • Folmer, O., Black, M., Hoeh, W., Lutz, R., & Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294–297.

    PubMed  CAS  Google Scholar 

  • Gervis, M. H., & Sims, N. A. (1992). The biology and culture of pearl oysters (Bivalvia: Pteriidae) (Vol. 21, pp. 1–49). International Center for living aquatic resources management.

  • Guindon, S., & Gascuel, O. (2003). A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology, 52(5), 696–704.

    Article  PubMed  Google Scholar 

  • Harvey, P. H., May, R. M., & Nee, S. (1994). Phylogenies without fossils. Evolution, 48(3), 523–529.

    Article  Google Scholar 

  • Hasan, A. K. (1994). A taxonomic review of the bivalve and gastropod mollusc fauna along the Saudi intertidal zone of the Arabian Gulf. Journal of King Abdulaziz University: Marine Sciences, 7, 245–253.

    Article  Google Scholar 

  • Hedgecock, D. (1994). Does variance in reproductive success limit effective population size of marine organisms? In A. Beaumont (Ed.), Genetics and evolution of aquatic organisms (pp. 122–134). London: Chapman & Hall.

    Google Scholar 

  • Herbinger, C., Smith, C. A., & Langy, S. (2006). Development and characterization of novel tetra-and dinucleotide microsatellite markers for the French Polynesia black-lipped pearl oyster, Pinctada margaritifera. Molecular Ecology Notes, 6(1), 107–109.

    Article  CAS  Google Scholar 

  • Hertlein, L. G., & Cox, L. R. (1969). Family Pteriidae Gray, 1847 (1820). In L. R. Cox, N. D. Newell, D. W. Boyd, C. C. Branson, R. Casey, R. Chavan, et al. (Eds.), Treatise on invertebrate paleontology. Part N. Mollusca 6: Bivalvia (Vol. 1, pp. N302–N306). Lawrence, KS: Geological Society of America and University of Kansas.

    Google Scholar 

  • Hollander, J. (2008). Testing the grain-size model for the evolution of phenotypic plasticity. Evolution, 62(6), 1381–1389.

    Article  PubMed  Google Scholar 

  • Huelsenbeck, J. P., & Ronquist, F. R. (2001). MrBayes: Bayesian inference of phylogeny. Bioinformatics, 17, 754–755.

    Article  PubMed  CAS  Google Scholar 

  • Huelsken, T., Keyse, J., Liggins, L., Penny, S., Treml, E. A., & Riginos, C. (2013). A novel widespread cryptic species and phylogeographic patterns within several giant clam species (Cardiidae: Tridacna) from the Indo-Pacific Ocean. PLos ONE, 8(11), e80858. doi:10.1371/journal.pone.0080858.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jameson, H. L. (1901). On the identity and distribution of the mother-of-pearl oysters; with a revision of the sub-genus Margaritifera. Proceedings of the General Meetings for Scientific Business of the Zoological Society of London, 1, 372–394.

    Article  Google Scholar 

  • Jombart, T. (2008). adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics, 24, 1403–1405.

    Article  PubMed  CAS  Google Scholar 

  • Katoh, K., & Toh, H. (2010). Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics, 26(15), 1899–1900.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120.

    Article  PubMed  CAS  Google Scholar 

  • Lallias, D., Boudry, P., Lapegue, S., King, J. W., & Beaumont, A. R. (2010). Strategies for the retention of high genetic variability in European flat oyster (Ostrea edulis) restoration programmes. Conservation Genetics, 11(5), 1899–1910.

    Article  Google Scholar 

  • Lemer, S., & Planes, S. (2012). Translocation of wild populations: Conservation implications for the genetic diversity of the black-lipped pearl oyster Pinctada margaritifera. Molecular Ecology, 21(12), 2949–2962.

    Article  PubMed  Google Scholar 

  • Lemer, S., & Planes, S. (2014). Effects of habitat fragmentation on the genetic structure and connectivity of the black-lipped pearl oyster Pinctada margaritifera populations in French Polynesia. Marine Biology, 161(9), 2035–2049.

    Article  Google Scholar 

  • Marshall Dustin, J., & Morgan Steven, G. (2011). Ecological and evolutionary consequences of linked life-history stages in the sea. Current Biology, 21(18), R718–R725.

    Article  PubMed  CAS  Google Scholar 

  • Mohammed, S. Z., & Al-Khayat, J. A. (1994). A preliminary check-list of benthic mollusca on the Qatari coasts, Arabian Gulf. Qatar University Science Journal, 14(1), 201–206.

    Google Scholar 

  • Monaghan, M. T., Wild, R., Elliot, M., Fujisawa, T., Balke, M., Inward, D. J., et al. (2009). Accelerated species inventory on Madagascar using coalescent-based models of species delineation. Systematic Biology, 58(3), 298–311.

    Article  PubMed  CAS  Google Scholar 

  • Moore, E. J. (1983). Tertiary marine pelecypods of California and Baja California: Nuculidae through Malleidae (pp. A1–A108). Geological Survey Professional Paper 1228-A.

  • Nanninga, G. B., & Berumen, M. L. (2014). The role of individual variation in marine larval dispersal. Frontiers in Marine Science, 1, 71. doi:10.3389/fmars.2014.00071.

    Article  Google Scholar 

  • Payo, D. A., Leliaert, F., Verbruggen, H., D’hondt, S., Calumpong, H. P., & De Clerck, O. (2013). Extensive cryptic species diversity and fine-scale endemism in the marine red alga Portieria in the Philippines. Proceedings of the Royal Society B: Biological Sciences, 280(1753), 20122660.

    Article  PubMed Central  PubMed  Google Scholar 

  • Pons, J., Barraclough, T., Gomez-Zurita, J., Cardoso, A., Duran, D., Hazell, S., et al. (2006). Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology, 55(4), 595–609.

    Article  PubMed  Google Scholar 

  • Porebski, S., Bailey, L. G., & Baum, R. B. (1997). Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Molecular Biology Reporter, 15(1), 8–15.

    Article  CAS  Google Scholar 

  • Posada, D., & Crandall, E. D. (1998). Modeltest: Testing the model of DNA substitution. Bioinformatics, 14(9), 817–818.

    Article  PubMed  CAS  Google Scholar 

  • Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155(2), 945–959.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Puillandre, N., Lambert, A., Brouillet, S., & Achaz, G. (2012a). ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology, 21(8), 1864–1877.

    Article  PubMed  CAS  Google Scholar 

  • Puillandre, N., Modica, M., Zhang, Y., Sirovich, L., Boisselier, M. C., Cruaud, C., et al. (2012b). Large-scale species delimitation method for hyperdiverse groups. Molecular Ecology, 21(11), 2671–2691.

    Article  PubMed  CAS  Google Scholar 

  • R Development Core Team. (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing.

  • Rambaut, A., Harvey, P. H., & Nee, S. (1997). End-Epi: An application for reconstructing phylogenetic and population processes from molecular sequences. Computer Applications in the Biosciences, 13, 303–306.

    PubMed  CAS  Google Scholar 

  • Rambaut, A., Suchard, M. A., Xie, D., & Drummond, A. J. (2014). Tracer version 1.6.

  • Rameshi, H. (2014). Annual report of Persian Gulf molluscs research Center (in Persian).

  • Reuter, M., Piller, W. E., & Richoz, S. (2012). The dispersal of Halimeda in northern hemisphere mid-latitudes: Palaeobiogeographical insights. Perspectives in Plant Ecology, Evolution and Systematics, 14(4), 303–309.

    Article  Google Scholar 

  • Rohling, E., Foster, G., Grant, K., Marino, G., Roberts, A., Tamisiea, M., & Williams, F. (2014). Sea-level and deep-sea-temperature variability over the past 5.3 million years. Nature, 508(7497), 477–482.

    Article  PubMed  CAS  Google Scholar 

  • Sheppard, C., Al-Husiani, M., Al-Jamali, F., Al-Yamani, F., Baldwin, R., Bishop, J., et al. (2010). The Gulf: A young sea in decline. Marine Pollution Bulletin, 60(1), 13–38.

    Article  PubMed  CAS  Google Scholar 

  • Sims, N. A. (1992). Pearl oyster Honiara. Solomon Islands: Pacific Islands Forum Fisheries Agency.

    Google Scholar 

  • Sohrabipour, J., & Rabiei, R. (2007). The checklist of green algae of the Iranian coastal lines of the Persian Gulf and Gulf of Oman. The Iranian Journal of Botany, 13(2), 146–149.

    Google Scholar 

  • Tajima, F., & Nei, M. (1984). Estimation of evolutionary distance between nucleotide sequences. Molecular Biology and Evolution, 1, 269–285.

    PubMed  CAS  Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10), 2731–2739.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Walkden, G., & Williams, A. (1998). Carbonate ramps and the Pleistocene–Recent depositional systems of the Arabian Gulf. Geological Society, London, Special Publications, 149(1), 43–53.

    Article  Google Scholar 

  • Weir, B. S., & Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358–1370.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regina L. Cunha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Sophie Arnaud-Haond and Regina L. Cunha have contributed equally to this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

S1_Supplementary material

Pinctada persica sampling locations in the Persian Gulf. Numbers in black circles indicate island locations (1. Khark; 4. Hendurabi–Shidvar; 5. Larak). The grey circles represent continental coral reef areas (2. Nakhiloo; 3. Nayband) where only Pinctada radiata can be found. The scale (in km) is indicated (PDF 326 kb)

S2_Supplementary material

Approximate geographic distribution of the lineages belonging to the Pinctada margaritifera complex (PDF 808 kb)

Supplementary material 3 (XLSX 60 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharif Ranjbar, M., Zolgharnien, H., Yavari, V. et al. Rising the Persian Gulf Black-Lip Pearl Oyster to the Species Level: Fragmented Habitat and Chaotic Genetic Patchiness in Pinctada persica . Evol Biol 43, 131–143 (2016). https://doi.org/10.1007/s11692-015-9356-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-015-9356-1

Keywords

Navigation