Skip to main content
Log in

Salinity effects on osmoregulation and gill morphology in juvenile Persian sturgeon (Acipenser persicus)

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The effect of abrupt and 5-day gradual salinity transfers from freshwater (FW) to 11 ‰ Caspian Sea brackish water (BW) was investigated in juvenile Persian sturgeon Acipenser persicus with three different weight groups: 1–2 g (1.62 ± 0.27 g), 2–3 g (2.55 ± 0.41 g) and 3–5 g (4.28 ± 0.76 g). Mortality rates, blood osmotic pressure, gill morphology and branchial Na+, K+-ATPase (NKA) activity were measured 4 and 10 days after abrupt transfer and 9 and 15 days after the initial gradual transfer (i.e. 4 and 10 days after reaching Caspian Sea salinity). Fish under 3 g could not survive increased salinity, and the blood osmotic pressure of the remaining surviving fish increased and remained elevated. However, heavier fish were able to survive and successfully acclimate, even to rapid salinity change with osmotic pressure reduced to Caspian Sea osmolality levels. At the gill level, the developmental increase in chloride cell volume and a higher NKA content most probably allow juveniles weighing more than 2 g to sharply increase NKA activity if the fish are transferred to BW. The rapid chloride cell proliferation occurring with increased salinity should strengthen this acclimation response. Therefore, a drastic physiological change occurs when fish weigh more than 2 g that allows migration to higher salinities. The triggering signal on chloride cells must be further investigated in order to optimize this functional step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdolhay H (1997) Artificial reproduction of fish for stock enhancement in the Caspian Sea. In: Seventh conference of Shilat, Responsible fisheries, 17–18 Feb, Tehran, Iranian Fisheries, pp 187–207

  • Abdolhay HA, Tahori HB (2006) Fingerling production and release for stock enhancement of sturgeon in the southern Caspian Sea: an overview. J Appl Ichthyol 22(1):125–131

    Article  Google Scholar 

  • Allen PJ, Cech JJ Jr (2007) Age/size effects on juvenile green sturgeon, Acipenser medirostris, oxygen consumption, growth, and osmoregulation in saline environments. Environ Biol Fish 79:211–229

    Article  Google Scholar 

  • Allen PJ, Cech JJ Jr, Kültz D (2009) Mechanisms of seawater acclimation in a primitive, anadromous fish, the green sturgeon. J Comp Physiol B 179:903–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen PJ, McEnroe M, Forostyan T, Cole S, Nicholl MM, Hodge B, Cech JJ Jr (2011) Ontogeny of salinity tolerance and evidence for seawater-entry preparation in juvenile green sturgeon, Acipenser medirostris. J Comp Physiol B 181:1045–1062

    Article  CAS  PubMed  Google Scholar 

  • Allen PJ, Mitchell ZA, De Vries RJ, Aboagye DL, Ciaramella MA, Ramee SW, Stewart HA, Shartau RB (2014) Salinity effects on Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus Mitchill, 1815) growth and osmoregulation. J Appl Ichthyol 30:1229–1236

    Article  Google Scholar 

  • Altinok I, Grizzle JM (2001) Effects of brackish water on growth, feed conversion and energy absorption efficiency by juvenile euryhaline and freshwater stenohaline fishes. J Fish Biol 59:1142–1152

    Article  Google Scholar 

  • Altinok I, Galli SM, Chapman FA (1998) Ionic and osmotic regulation capabilities of juvenile Gulf of Mexico sturgeon, Acipenser oxyrinchus desotoi. Comp Biochem Physiol A 120:609–616

    Article  Google Scholar 

  • Aristizabal-Abud EO (1992) Effects of salinity and weight on routine metabolism in the juvenile croaker, Micropogonias furnieri (Desmarest 1823). J Fish Biol 40:471–472

    Article  Google Scholar 

  • Bahmani M, Yousefi JA (2011) Adaptation possibility of Acipenser persicus larvae 20 days old in different salinities. J Biol 24(5):669–678

    Google Scholar 

  • Bakhshalizadeh S, Bani A, Abdolmalaki S, Nahrevar R, Rastin R (2011) Age, growth and mortality of the Persian Sturgeon, Acipenser persicus, in the Iranian waters of the Caspian Sea. Caspian J Environ Sci 9(2):159–167

    Google Scholar 

  • Billard R, Lecointre G (2001) Biology and conservation of sturgeon and paddlefish. Rev J Fish Biol Fish 10:355–392

    Article  Google Scholar 

  • Carmona R, Garcia- Gallego M, Sanz A, Domezain A, Ostos- Garrido MV (2004) Chloride cells and pavement cells in gill epithelia of Acipenser naccarii: ultrastructural modifications in seawater-acclimated specimens. J Fish Biol 64:553–566

    Article  Google Scholar 

  • Cataldi E, Ciccotti E, Di Marco P, Di Santo O, Bronzi P, Cataudella S (1995) Acclimation trials of juvenile Italian sturgeon to different salinities: morpho-physiological descriptors. J Fish Biol 47:609–618

    Article  Google Scholar 

  • Cataldi E, Barzaghi C, Di Marco P, Boglionel C, Dini L, McKenzie DJ, Bronzi P, Cataudella S (1999) Some aspects of osmotic and ionic regulation in Adriatic sturgeon Acipenser naccarii. I: ontogenesis of salinity tolerance. J Appl Ichthyol 15:57–60

    Article  Google Scholar 

  • Evans DH (1993) Osmotic and ionic regulation. In: Evans DH (ed) The physiology of fishes. CRC Press, Boca Raton, pp 315–341

    Google Scholar 

  • Evans DH, Claiborne JB (2009) Osmotic and ionic regulation in fishes. In: Evans DH (ed) Osmotic and ionic regulation: cells and animals. CRC Press, Boca Raton, pp 295–366

    Google Scholar 

  • Evans DH, Piermarini PM, Choe KP (2005) The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Rev Physiol 85:97–177

    Article  CAS  Google Scholar 

  • Faalk-Petersen IB (2005) Comparative organ differentiation during early life stages of marine fish. Fish Shellfish Immunol 19(5):397–412

    Article  Google Scholar 

  • Flik G, Wendelaar Bonga S, Fenwick J (1983) Ca2+-dependent phosphatase and ATPase activities in eel gill plasma membranes. I. Identification of Ca2+-activated ATPase activities with nonspecific phosphatase activities. Comp Biochem Physiol B 76:745–754

    CAS  PubMed  Google Scholar 

  • Gesner J, Freyhof J, Kottelat M (2010) Acipenser persicus. The IUCN Red List of threatened species. Version 2015.2. www.iucnredlist.org

  • He X, Zhuang P, Zhang L, Xie C (2009) Osmoregulation in juvenile Chinese sturgeon (Acipenser sinensis Gray) during brackish water adaptation. Fish Physiol Biochem 35(1):223–230

    Article  CAS  PubMed  Google Scholar 

  • Hiroi J, McCormick SD, Ohtani-Kaneko R, Kaneko T (2005) Functional classification of mitochondrion-rich cells in euryhaline Mozambique tilapia (Oreochromis mossambicus) embryos, by means of triple immunofluorescence staining for Na+/K+-ATPase, Na+/K+/2Cl cotransporter and CFTR anion channel. J Exp Biol 208:2023–2036

    Article  CAS  PubMed  Google Scholar 

  • Jarvis PL, Ballantyne JS (2003) Metabolic responses to salinity acclimation in juvenile shortnose sturgeon Acipenser brevirostrum. Aquaculture 219:891–909

    Article  CAS  Google Scholar 

  • Kazemi RBM, Kraushkina LS, Pourkazemi M, Ogorzalek A (2003) Changes in blood serum osmolarity and ultrastructure of gill chloride cells in young Persian sturgeon (Acipenser persicus) (Borodin) of different sizes during adaptation to sea water. J Zool Poloniae 48(1–4):5–30

    Google Scholar 

  • Kazemi R, Bahmani M, Hallajian A, Yarmohammadi M (2006) Blood serum osmotic and ionic regulation of wild adults and reared juvenile Persian sturgeon, Acipenser persicus. Iran J Fish Sci 6:43–56

    Google Scholar 

  • Khatooni MM, Amiri BM, Hoseinifar SH, Jafari V, Makhdomi N (2011) Acclimation potential of Acipenser persicus post-larvae to abrupt or gradual increase in salinity. J Appl Ichthyol 27(2):528–532

    Article  Google Scholar 

  • Khodabandeh S, Khoshnood Z, Mosafer S (2009a) Immunolocalization of Na+, K+-ATPase-rich cells in the gill and urinary system of Persian sturgeon, Acipenser persicus, fry. Aquac Res 40(3):329–336

    Article  Google Scholar 

  • Khodabandeh S, Mosafer S, Khoshnood Z (2009b) Effects of cortisol and salinity acclimation on Na+/K+/2Cl- cotransporter gene expression and Na+, K+-ATPase activity in the gill of Persian sturgeon, Acipenser persicus, fry. Sci Mar 73(S1):111–116

    Article  CAS  Google Scholar 

  • Khodorevskaya RP, Dovgopol GF, Zhuravleva OL, Vlasenko AD (1997) Present status of commercial stocks of sturgeons in the Caspian Sea basin. Environ Biol Fish 48:209–219

    Article  Google Scholar 

  • Krayushkina LS, Polls WTW, Gerasimov AA, Panov AA (1995) Peculiarities ionic regulation in young sturgeons (Acipenseridae) during adaption to sea water. In: Gershanovichm AD, Smith TII (eds) International symposium on sturgeons proceedings. VNIRO, Moscow, pp 43–51

    Google Scholar 

  • Krayushkina LS, Semenova OG, Vyushina AV (2006) Level of serum cortisol and Na+/K+ ATP-ase activity of gills and kidneys in different acipenserids. J Appl Ichthyol 22:182–187

    Article  Google Scholar 

  • Mancera JM, McCormick SD (2000) Rapid activation of gill Na+, K+-ATPase in the euryhaline teleost Fundulus heteroclitus. J Exp Zool 287:263–274

    Article  CAS  PubMed  Google Scholar 

  • Marshall WS (1995) Transport processes in isolated teleost epithelia: opercular epithelium and urinary bladder. Fish Physiol 14:1–19

    Article  CAS  Google Scholar 

  • Marshall WS, Bryson SE (1998) Transport mechanisms of seawaterteleosts chloride cells: inclusive model of a multifunctional cell. Comp Biochem Physiol A 119:97–106

    Article  CAS  Google Scholar 

  • Marshall WS, Grosell M (2006) Ion transport, osmoregulation, and acid–base balance. In: Evans DH, Claiborne JB (eds) The physiology of fishes, 3rd edn. CRC Press, Boca Raton, pp 177–230

    Google Scholar 

  • Martinez Alvarez RM, Sanz A, Garcia- Gallego M, Domezain A, Domezain J, Carmona R, Ostos-Garrido MV, Morales AE (2005) Adaptive branchial mechanisms in the sturgeon Acipenser naccarii during acclimation to saltwater. Comp Biochem Physiol A 141:183–190

    Article  Google Scholar 

  • McCormick SD (1996) Effects of growth hormone and insulinlike growth factor I on salinity tolerance and gill Na+, K+-ATPase in Atlantic salmon (Salmo salar): interaction with cortisol. Gen Comp Endocrinol 101:3–11

    Article  CAS  PubMed  Google Scholar 

  • McCormick SD, Sundell K, Thrandur Björnsson BT, Brown CL, Hiroi J (2003) Influence of salinity on the localization of Na+/K+-ATPase, Na+/K+/2Cl cotransporter (NKCC) and CFTR anion channel in chloride cells of the Hawaiian goby (Stenogobius hawaiiensis). J Exp Biol 206:4575–4583

    Article  CAS  PubMed  Google Scholar 

  • McCormick SD, Regish M, Christensen K (2009) Distinct freshwater and seawater isoforms of Na+/K+-ATPase in gill chloride cells of Atlantic salmon. J Exp Biol 212(24):3994–4001

    Article  CAS  PubMed  Google Scholar 

  • McKenzie DJ, Cataldi E, Di Marco P, Mandich A, Romano P, Ansferri S, Bronzi P, Cataudella S (1999) Some aspects of osmotic and ionic regulation in adriatic sturgeon Acipenser naccarii. II: morpho-physiological adjustments to hyperosmotic environments. J Appl Ichthyol 15:61–66

    Article  Google Scholar 

  • Mosafer Khorjestan S, Khodabandeh S, Khoshnood Z (2009) Mitochondria rich-cells localization and effect of salinity on their distribution in kidney tubules of Persian sturgeon Acipenser persicus. Cell (Yakhteh) 10(4):280–287

    Google Scholar 

  • Natochin YV, Lukianenko VI, Kirsanov VI, Lavrova EA, Metallov GF, Shakhmatova EI (1985) Features of osmotic and ionic regulation in Russian Sturgeon (Acipenser gueldenstaedtii Brant). Comp Biochem Physiol A 80:297–302

    Article  CAS  PubMed  Google Scholar 

  • Pikitch EK, Doukakis P, Lauck L, Chakrabarty P, Erickson DL (2005) Status, trends and management of sturgeon and paddlefish fisheries. Fish Fish 6(3):233–265

    Article  Google Scholar 

  • Pourkazemi M (2006) Caspian Sea sturgeon conservation and fisheries: past present and future. J Appl Ichthyol 22(1):12–16

    Article  Google Scholar 

  • Rocha TL, Carvalho R, Yamada AT, Sabóia-Morais SMT (2010) Morphologic analysis of developmental phases and gill ontogenesis in neotropical species Poecilia vivipara (Cyprinodontiformes: Poeciliidae) exposed to different salinities. Zoologia 27(4):554–562

    Article  Google Scholar 

  • Rodriguez A, Gallardo MA, Gisbert E, Santilari S, Ibarz A, Sanchez J, Castello- Orvay F (2002) Osmoregulation in juvenile Siberian sturgeon (Acipenser baerii). Fish Physiol Biochem 26:345–354

    Article  CAS  Google Scholar 

  • Sardella BA, Kültz D (2009) Osmo- and ionoregulatory responses of green sturgeon (Acipenser medirostris) to salinity acclimation. J Comp Physiol B 179:383–390

    Article  PubMed  Google Scholar 

  • Secor DH, Arefjev V, Nikolaev A, Sharov A (2000) Restoration of sturgeons: lessons from the Caspian Sea sturgeon ranching programme. Fish Fish 1:215–230

    Article  Google Scholar 

  • Varsamos S, Nebel C, Charmantier G (2005) Ontogeny of osmoregulation in postembryonic fish. Rev Comp Biochem Physiol A 141:401–429

    Article  Google Scholar 

  • Williot P, Arlat G, Chebanov M, Gulyas T, Kasimov R, Kirschbaum F, Patriche N, Pavlovskaya LP, Poliakova L, Pourkazemi M, Kim Y, Zhuang P, Zholdasova IM (2002) Conservation and broodstock management. Int Rev Hydrobiol 87(5–6):483–506

    Article  Google Scholar 

  • Woo NYS, Kelly SP (1995) Effects of salinity and nutritional status on growth and metabolism of Sparus sarba in a closed seawater system. Aquaculture 135:229–238

    Article  Google Scholar 

  • Zhao F, Qu L, Zhuang P, Zhang L, Liu J, Zhang T (2011) Salinity tolerance as well as osmotic and ionic regulation in juvenile Chinese sturgeon (Acipenser sinensis Gray, 1835) exposed to different salinities. J Appl Ichthyol 27:231–234

    Article  Google Scholar 

  • Zydlewski J, McCormick SD (1997) The ontogeny of salinity tolerance in the American shad, Alosa sapidissima. Can J Fish Aquat Sci 54:182–189

    Article  CAS  Google Scholar 

  • Zydlewski J, McCormick SD (2001) Developmental and environmental regulation of chloride cells in young American Shad, Alosa sapidissima. J Exp Zool 290:73–87

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Tarbiat Modares University (Faculty of Marine Science), Iran, the University of Montpellier, France (MARBEC laboratory), the French Ministry of Foreign Affairs and Campus France (CISSC) for funding (co-supervised Ph.D. program). We thank the Iranian Fisheries Organization for allowing us to use this endangered species for our study. The field experiments on live fish were carried out with the expertise of Mr Abbas Alizadeh, head of Shahid Beheshti Artificial Sturgeon Propagation and Rearing Center (SAPRC), Rasht, Iran. We would also like to thank Dr. Hasanabadizadeh, Dr. Boudour, Mrs Abdolazizi and Mrs Kakaei Lafdani for their support during the experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Reza Kalbassi or Jehan-Hervé Lignot.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirangi, S.A., Kalbassi, M.R., Khodabandeh, S. et al. Salinity effects on osmoregulation and gill morphology in juvenile Persian sturgeon (Acipenser persicus). Fish Physiol Biochem 42, 1741–1754 (2016). https://doi.org/10.1007/s10695-016-0254-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-016-0254-y

Keywords

Navigation