Skip to main content

Advertisement

Log in

Seasonal variations of phytoplankton community in relation to environmental factors in a protected meso-oligotrophic southern Mediterranean marine ecosystem (Mellah lagoon, Algeria) with an emphasis of HAB species

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The spatial and temporal variation of phytoplankton communities including HAB species in relation to the environmental characteristics was investigated in the protected meso-oligotrophic Mellah lagoon located in the South Western Mediterranean. During 2016, a biweekly monitoring of phytoplankton assemblages and the main abiotic factors were realized at three representative stations. Taxonomic composition, abundance, and diversity index were determined. In total, 227 phytoplankton species (160 diatoms and 53 dinoflagellates) were inventoried. There was a clear dominance of diatoms (62.9%) compared with dinoflagellates (36.8%). Diatoms dominated in spring and dinoflagellates developed in summer and early autumn in Mellah showing a marked seasonal trend. Data showed that the dynamic of the phytoplankton taxa evolving in the lagoon was mainly driven by temperature and salinity. For the first time, a number of potentially toxic species have been identified, including 2 diatoms (Pseudo-nitzschia group delicatissima, Pseudo-nitzschia group seriata) and 5 dinoflagellates (Alexandrium minutum, Alexandrium tamarense/catenella, Dinophysis acuminata, Dinophysis sacculus, Prorocentrum lima). These harmful species could threat the functioning of the Mellah lagoon and human health and require the establishment of a monitoring network. Finally, our study suggests that the observed decrease of the phytoplankton diversity between 2001 and 2016 could result from the reduction in water exchanges between the lagoon and the adjacent coast following the gradual clogging of the channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8.
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aminot, A., & Chaussepied, M. (1983). Manuel des analyses chimiques en milieu marin. Brest: Eds CNEXO.

    Google Scholar 

  • Bernardi Aubry, F., & Acri, F. (2004). Phytoplankton seasonality and exchange at the inlets of the Lagoon of Venice (July 2001-June 2002). Journal of Marine Systems, 51, 65–76.

    Google Scholar 

  • Bernardi Aubry, F., Acri, F., Bianchi, F., & Pugnetti, A. (2013). Looking for patterns in the phytoplankton community of the Mediterranean microtidal Venice Lagoon: evidence from ten years of observations. Scientia Marina, 77(1), 47–60.

    Google Scholar 

  • Béthoux, J. P., Morin, P., & Ruiz-Pino, D. (2002). Temporal trends in nutrient ratios: chemical evidence of Mediterranean ecosystem changes driver by human activity. Deep-Sea Research II, 49, 2007–2016.

    Google Scholar 

  • Bianchi, F., Acri, F., Bernardi-Auby, F., Berton, A., Boldrin, A., Camatti, E., et al. (2003). Can plankton be considered a bio-indicator of water quality in the lagoon of Venice? Marine Pollution Bulletin, 46, 964–971.

    CAS  Google Scholar 

  • Bianchi, F., Ravagnan, E., Acri, F., Bernardi-Auby, F., Boldrin, A., Camatti, E., et al. (2004). Variability and fluxes of hydrology, nutrients and particulate matter between the Venice lagoon and the Adriatic Sea. Preliminary results (years 2001-2002). Journal of Marine Systems, 51, 49–64.

    Google Scholar 

  • Bonin, D. J. (1988). Rôle du phosphate organique dissous dans la production primaire. Oceanis, 14, 381–387.

    Google Scholar 

  • Bourrelly, P. (1988). Complément, les algues d’eau douce, initiation à la systématique. Tome I: Les algues vertes. France: Eds Boudée. Paris.

    Google Scholar 

  • Bricker, S. B., Clement, C. G., Pirhalla, D. E., Orlando, S. P., & Farrow, D. R. G. (1999). National estuarine eutrophication assessment (Effects of nutrient enrichment in the nation’s estuaries. NOAA, National Ocean Service, Special Projects Office and the National Centers for Coastal Ocean Science). MD: Silver Spring.

    Google Scholar 

  • Chrétiennot-Dinet, M. J., Sournia, A., Ricard, M., & Billard, C. (1993). A classification of the marine phytoplankton of the word from class to genus. Phycologia, 32, 159–179.

    Google Scholar 

  • Daoudi, M., Serve, L., Rharbi, N., El Madani, F., & Vouvé, F. (2012). Phytoplankton distribution in the Nador lagoon (Morocco) and possible risks for harmful algal blooms. Transitional Waters Bulletin, 6, 4–19.

    Google Scholar 

  • De Casabianca, M. L., Laugier, T., Collart, D., & Rigollet, V. (1994). Macrophyte populations and eutrophication (Thau lagoon, France). First results. Proceedings Okeanos (pp. 50-55). France: Montpellier.

    Google Scholar 

  • Dhib, A., Fertouna-Bellakhal, M., Turki, S., & Aleya, L. (2016). Driving factors of dinoflagellate cyst distribution in surface sediments of a Mediterranean lagoon with limited access to the sea. Marine Pollution Bulletin, 112, 303–312.

    CAS  Google Scholar 

  • Dodge, D. J. (1982). Marine dinoflagellates of the British Isles. In Her Majesty’s Stationery Office. London. London: University of.

    Google Scholar 

  • Draredja, B., (2007). Structure et fonctionnement d’un milieu lagunaire méditerranéen: Lagune Mellah (El-Kala, Algérie Nord-Est). Thèse Doctorat. Université d’Annaba, Algérie.

  • El-Kassas, H. Y., & Gharib, S. M. (2016). Studies on spatio-temporal dynamics of phytoplankton in Burullus lagoon, southern Mediterranean coast, Egypt. The Egyptian Journal of Experimental Biology (Botany), 10(2), 255–266.

    Google Scholar 

  • Fanuko, N., & Valčić, M. (2009). Phytoplankton composition and biomass of the northern Adriatic lagoon of Stella Maris, Croatia. Acta Botanica Croatica, 68, 29–44.

    Google Scholar 

  • FAO. (1987). Aménagement du chenal du lac Mellah. Rapport FAO et Ministère de l’hydraulique, de l’environnement et des forêts, division de développement des activités hydrauliques et agricoles (Algérie), note préliminaire.

  • Fertouna-Bellakhal, M., Dhib, A., Fethalli, A., Bellakhal, M., Chomérat, N., Masseret, E., et al. (2015). Alexandrium pacificum Litaker sp. nov. (Group IV): resting cyst distribution and toxin profile of vegetative cells in Bizerte Lagoon (Tunisia, Southern Mediterranean Sea). Harmful Algae, 48, 69–82.

    Google Scholar 

  • Guelorget, O., Frisoni, G. F., Ximenes, M. C., & Perthuisot, J. P. (1989). Expression biologique du confinement dans une lagune méditerranéenne: le lac Mellah (Algérie). Revue d’Hydrobiologie Tropicale, 22, 87–99.

    Google Scholar 

  • Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 9 http://palaeo-electronica.org/.

    Google Scholar 

  • Kormas, K. A., Nicoladou, A., & Reizopoulou, S. (2001). Temporal variations of nutrients, chlorophyll a and particulate matter in three coastal lagoons of Amvrakikos Gulf (Ionian Sea, Greece). Marine Ecology, 22, 201–213.

    CAS  Google Scholar 

  • Lakkis, S., & Zeidane, R. (1985). Modification de l’écosystème planctonique par la pollution des eaux côtières libanaise. In Les effets de la pollution sur les écosystèmes marins: 123-159. Réunion FAO, PNUE Blanc, Espagne, 7-11 octobre 1985, FIRI/R/R352 (Suppl.).

    Google Scholar 

  • Le Fur, I., De Wit, R., Plus, M., Oheix, J., Simier, M., & Ouisse, V. (2018). Submerged benthic macrophytes in Mediterranean lagoons: distribution patterns in relation to water chemistry and depth. Hydrobiologia, 808, 175–200.

    Google Scholar 

  • Lenzi, M., Palmieri, R., & Porello, S. (2003). Restoration of the trophic Orbetello lagoon (Tyrrhenian Sea, Italy), water quality management. Marine Pollution Bulletin, 46, 1540–1548.

    CAS  Google Scholar 

  • Lloret, J., Marín, A., & Marín-Guirao, L. (2008). Is coastal lagoon eutrophication likely to be aggravated by global climate change? Estuarine, Coastal and Shelf Science, 78, 403–412.

    Google Scholar 

  • Lorenzen, C. J. (1967). Determination of chlorophyll and pheopigments: spectrophotometric equations. Limnology and Oceanography, 12, 343–346.

    CAS  Google Scholar 

  • Lundin, C. G., & Linden, O. (1993). Coastal ecosystems: attempts to manage a threatened resource. Ambio, 22, 468–476.

    Google Scholar 

  • Magni, P., Draredja, B., Melouah, K., & Como, S. (2015). Patterns of seasonal variation in lagoonal macrozoobenthic assemblages (Mellah lagoon, Algeria). Marine Environmental Research, 109, 168–176.

    CAS  Google Scholar 

  • Mihnea, P. E. (1992). Conventional methods applied in pollution control of the Romanian coastal waters of the Black Sea. In R. A. Vollendweider, R. Marchetti, & R. Viviani (Eds.), Marine Coastal Eutrophication (pp. 1165–1178).

    Google Scholar 

  • Mistri, M., Rossi, R., & Fano, A. (2001). Structure and secondary production of a soft bottom macrobenthic community in a brackish lagoon (Sacca di Goro, north-eastern Italy). Estuarine, Coastal and Shelf Science, 52, 605–616.

    Google Scholar 

  • Natij, L., Damsiri, Z., Khalil, K., Loudiki, M., Ettahiri, O., & Elkalay, K. (2014). Phytoplankton abundance and diversity in the coastal waters of Oualidia lagoon, south Moroccan Atlantic in relation to environmental variables. International Journal of Advanced Research, 2, 1022–1032.

    Google Scholar 

  • Nuccio, C., Melillo, C., Massi, L., & Innamorati, M. (2003). Phytoplankton abundance, community structure and diversity in the eutrophicated Orbetello lagoon (Tuscany) from 1995 to 2001. Oceanologica Acta, 26, 15–25.

    CAS  Google Scholar 

  • OECD. (1982). Eutrophication of waters: monitoring, assessment and control. Paris, France: Environment Directorate, Organisation for Economic Cooperation and Development (OECD).

    Google Scholar 

  • Ounissi, M., Haridi, A., & Rétima, A. (2002). Variabilité du zooplancton de la lagune Mellah (Algérie) selon l’advection tidale en hiver et au printemps 1996-1997. Journal de Recherche Océanographique, 27, 1–13.

    Google Scholar 

  • Pasqualini, V., Pergent-Martini, C., Fernandez, C., Ferrat, L., Tomaszewski, J. E., & Pergent, G. (2006). Wetland monitoring: aquatic plant changes in two Corsican coastal lagoons (Western Mediterranean Sea). Aquatic Conservation: Marine and Freshwater Ecosystems, 16, 43–60.

    Google Scholar 

  • Petihakis, G., Triantafyllou, G., Koutsoubas, D., Allen, I., & Dounas, C. (1999). Modelling the annual cycles of nutrients and phytoplankton in a Mediterranean lagoon (Gialova, Grece). Marine Environmental Research, 48, 37–58.

    CAS  Google Scholar 

  • Piélou, E. C. (1966). The measurement of diversity in different types of biological collection. Journal of Theoretical Biology, 13, 131–144.

    Google Scholar 

  • Plus, M., Chapelle, A., Menesguen, A., Deslous-Paoli, J. M., & Aubyd, I. (2003). Modelling seasonal dynamics of biomass and nitrogen contents in a seagrass meadow (Zostera noltii Hornem): application of the Thau lagoon (French Mediterranean coast). Ecological Modelling, 161, 213–238.

    CAS  Google Scholar 

  • Pulina, S., Padedda, B. M., Satta, C. T., Sechi, N., & Luglié, A. (2012). Long-term phytoplankton dynamics in a Mediterranean eutrophiclagoon (Cabras Lagoon, Italy). Plant Biosystems, 146, 259–272.

    Google Scholar 

  • Ricard, M. (1987). Atlas du phytoplancton marin (Vol. II: Diatomophyceaes). Paris, France: Eds. CNRS.

    Google Scholar 

  • Sfriso, A. (1995). Temporal and spatial responses of growth of Ulva rigida C. Ag. to environmental and tissue concentrations of nutrients in the lagoon of Venice. Botanica Marina, 38, 557–573.

    Google Scholar 

  • Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. Urban: University of Illinois Press.

    Google Scholar 

  • Sin, Y., Wetzel, R. L., & Anderson, I. C. (1999). Spatial and temporal characteristics of nutrient and phytoplankton dynamics in the York River estuary, Virginia: analysis of long-term data. Estuaries, 22, 260–275.

    Google Scholar 

  • Solidoro, C., Pastres, R., Cossarini, G., & Ciavatta, S. (2004). Seasonal and spatial variability of water quality parameters in the lagoon Venice. Journal of Marine Systems, 51, 7–18.

    Google Scholar 

  • Sournia, A. (1984). Classification et nomenclature de divers Dinoflgellés marins (Dinophycées). Phycologia, 23, 245–355.

    Google Scholar 

  • Sournia, A. (1986). Atlas du phytoplancton marins Vol I. Introduction, Cyanophycées, Dictyophycées, Dinophycées et Raphidophycées. Paris: Eds CNRS.

    Google Scholar 

  • Tomas, C. R. (1997). Identifying marine phytoplankton. San Diego: Academic Press.

    Google Scholar 

  • Triantafyllou, G., Petihakis, G., Dounas, C., Koutsoubas, D., Arvanitidis, C., & Eleftheriou, A. (2000). Temporal variations in benthic communities and their response to physicochemical foreign: a numerical approach. ICES Journal of Marine Science, 57, 1507–1516.

    Google Scholar 

  • Turki, S., Balti, N., & Ben Jannet, H. (2007). First bloom of dinoflagellate Alexandrium catenella in Bizerte Lagoon (northern Tunisia). Harmful Algae News, 35, 7–9.

    Google Scholar 

  • Utermöhl, H. (1958). Zur Vervollkommnung der quantitativen phytoplankton methodik. In Mitteilungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie.

    Google Scholar 

  • Viaroli, P., Naldi, M., Christian, R. R., & Fumagalli, I. (1993). The role of macroalgae and detritus in the nutrient cycles in a shallow-water dystrophic lagoon. Verhandlungen International Verein der Limnologie, 25, 1048–1051.

    CAS  Google Scholar 

  • Vincent, C., Mouillot, D., Lauret, M., Do Chi, T., Troussellier, M., & Aliaume, C. (2006). Contribution of exotic species, environmental factors and spatial components to the macrophyte assemblages in a Mediterranean lagoon (Thau lagoon, Southern France). Ecological Modelling, 193, 119–131.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the LAGUNOTOX research project funded by foundation TOTAL. Thanks to IRD (Institut Français pour la recherche et le développement) and MARBEC Laboratory for funding the stay of M.A. Draredja in Montpellier University. We thank the Algerian Minestry of High Eucation and Scientific Research for funding M.A. Draredja PhD thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Laabir.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1 Check list of phytoplankton species encountered in Mellah lagoon during 2016. (F: freshwater, M: marine, L: lagoon, T: potentially toxic). Classification depending on Website WoRMS: http://www.marinespecies.organd AlgaeBase: http://www.algaebase.org

figure aafigure aafigure aa

Appendix 2 Spearman correlations matrix between environmental factors and dominating microphytoplanton taxa (diatoms and dinoflagellates) in the water column. Values are in bold and underlined when significant with p < 0.01 and only in bold with p < 0.05

figure b

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Draredja, M.A., Frihi, H., Boualleg, C. et al. Seasonal variations of phytoplankton community in relation to environmental factors in a protected meso-oligotrophic southern Mediterranean marine ecosystem (Mellah lagoon, Algeria) with an emphasis of HAB species. Environ Monit Assess 191, 603 (2019). https://doi.org/10.1007/s10661-019-7708-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7708-5

Keywords

Navigation