Skip to main content
Log in

Terrestrial runoff may reduce microbenthic net community productivity by increasing turbidity: a Mediterranean coastal lagoon mesocosm experiment

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Terrestrial runoff into aquatic ecosystems may have both stimulatory and inhibitory effects, due to nutrient subsidies and increased light attenuation. To disentangle the effects of runoff on microbenthos, we added soil to coastal mesocosms and manipulated substrate depth. To test if fish interacted with runoff effects, we manipulated fish presence. Soil decreased microphytobenthic chlorophyll-a per area and per carbon (C) unit, increased microbenthic phosphorous (P), and reduced microbenthic nitrogen (N) content. Depth had a strong effect on the microbenthos, with shallow substrates exhibiting greater microbenthic net ecosystem production, gross primary production, and community respiration than deep substrates. Over time, micobenthic algae compensated for deeper substrate depth through increased chlorophyll-a synthesis, but despite algal shade compensation, the soil treatment still appeared to reduce the depth where microbenthos switched from net autotrophy to net heterotrophy. Fish interacted with soil in affecting microbenthic nutrient composition. Fish presence reduced microbenthic C/P ratios only in the no soil treatment, probably since soil nutrients masked the positive effects of fish excreta on microbenthos. Soil reduced microbenthic N/P ratios only in the absence of fish. Our study demonstrates the importance of light for the composition and productivity of microbenthos but finds little evidence for positive runoff subsidy effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alpert, P., T. Ben-Gai, A. Baharad, Y. Benjamini, D. Yekutieli, M. Colacino, L. Diodato, C. Ramis, V. Homar, R. Romero, S. Michaelides & A. Manes, 2002. The paradoxical increase of Mediterranean extreme daily rainfall in spite of decrease in total values. Geophysical Research Letters 29(11): 1536.

    Article  Google Scholar 

  • APHA, 1998. Standard Methods for the Examination of Water and Waste Water. American Public Health Association, Washington DC.

    Google Scholar 

  • Ask, J., J. Karlsson, L. Persson, P. Ask, P. Byström & M. Jansson, 2009. Whole-lake estimates of carbon flux through algae and bacteria in benthic and pelagic habitats of clear-water lakes. Ecology 90: 1923–1932.

    Article  PubMed  Google Scholar 

  • Attayde, J. L. & L. A. Hansson, 1999. Effects of nutrient recycling by zooplankton and fish on phytoplankton communities. Oecologia 121: 47–54.

    Article  Google Scholar 

  • Attayde, J. L. & L. A. Hansson, 2001. The relative importance of fish predation and excretion effects on planktonic communities. Limnology and Oceanography 46: 1001–1012.

    Article  Google Scholar 

  • Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer Reil & F. Thingstad, 1983. The ecological role of water-column microbes in the sea. Marine Ecology Progress Series 10: 257–263.

    Article  Google Scholar 

  • Barranguet, C., E. Alliot & M. R. Plantecuny, 1994. Benthic microphytic activity at 2 Mediterranean shellfish cultivation sites with reference to benthic fluxes. Oceanologica Acta 17: 211–221.

    Google Scholar 

  • Barrera-Alba, J. J., S. M. F. Gianesella, G. A. O. Moser & F. M. Saldanha-Correa, 2009. Influence of allochthonous organic matter on bacterioplankton biomass and activity in a eutrophic, sub-tropical estuary. Estuarine Coastal and Shelf Science 82: 84–94.

    Article  CAS  Google Scholar 

  • Bauer, J. E., W.-J. Cai, P. A. Raymond, T. S. Bianchi, C. S. Hopkinson & P. A. G. Regnier, 2013. The changing carbon cycle of the coastal ocean. Nature 7478: 61–70.

    Article  Google Scholar 

  • Burgmer, T., J. Reiss, S. A. Wickham & H. Hillebrand, 2010. Effects of snail grazers and light on the benthic microbial food web in periphyton communities. Aquatic Microbial Ecology 61: 163–178.

    Article  Google Scholar 

  • Canuel, E. A., S. S. Cammer, H. A. McIntosh & C. R. Pondell, 2012. Climate change impacts on the organic carbon cycle at the land-ocean interface. Annual Review of Earth and Planetary Sciences 40: 685–711.

    Article  CAS  Google Scholar 

  • Carpenter, S. R., J. J. Cole, J. R. Hodgson, J. F. Kitchell, M. L. Pace, D. Bade, K. L. Cottingham, T. E. Essington, J. N. Houser & D. E. Schindler, 2001. Trophic cascades, nutrients, and lake productivity: whole-lake experiments. Ecological Monographs 71: 163–186.

  • Cloern, J. E., 1987. Turbidity as a control on phytoplankton biomass and productivity in estuaries. Continental Shelf Research 7: 1367–1381.

    Article  Google Scholar 

  • Engelsen, A., S. Hulth, L. Pihl & K. Sunbäck, 2008. Benthic trophic status and nutrient fluxes in shallow-water sediments. Estuarine Coastal and Shelf Science 78: 783–795.

    Article  Google Scholar 

  • Epstein, S. S., I. V. Burkovsky & M. P. Shiaris, 1992. Ciliate grazing on bacteria, flagellates, and microalgae in a temperate zone sandy tidal flat: ingestion rates and food niche partitioning. Journal of Experimental Marine Biology and Ecology 165: 103–123.

    Article  Google Scholar 

  • Falkowski, P. G. & J. A. Raven, 2007. Aquatic Photosynthesis, 2nd ed. Princeton University Press, Princeton.

    Google Scholar 

  • Francoeur, S. N., S. T. Rier & S. B. Whorley, 2013. Methods for sampling and analyzing wetland algae. In Anderson, J. T., W. C. Conway & C. A. Davis (eds), Wetland Techniques, Chap 1, Vol. 2. Springer, New York: 1–58.

    Chapter  Google Scholar 

  • Frost, P. C. & J. J. Elser, 2002. Effects of light and nutrients on the net accumulation and elemental composition of epilithon in boreal lakes. Freshwater Biology 47: 173–183.

    Article  Google Scholar 

  • Grasshoff, K., M. Ehrhardt & K. Kremling, 1983. Methods of Seawater Analysis, 2nd ed. Verlag Chemie, Weinheim.

    Google Scholar 

  • Greenwood, J. L. & A. D. Rosemond, 2005. Periphyton response to long-term nutrient enrichment in a shaded headwater stream. Canadian Journal of Fisheries and Aquatic Sciences 62: 2033–2045.

    Article  CAS  Google Scholar 

  • Guadayol, O., F. Peters, C. Marrase, J. M. Gasol, C. Roldan, E. Berdalet, R. Massana & A. Sabata, 2009. Episodic meteorological and nutrient-load events as drivers of coastal planktonic ecosystem dynamics: a time-series analysis. Marine Ecology-Progress Series 381: 139–155.

    Article  CAS  Google Scholar 

  • Jäger, C. G. & S. Diehl, 2014. Resource competition across habitat boundaries: asymmetric interactions between benthic and pelagic producers. Ecological Monographs 84: 287–302.

    Article  Google Scholar 

  • Kirk, J. T. O., 1994. Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Kuehn, K. A., S. N. Francoeur, R. H. Findlay & R. K. Neely, 2014. Priming in the microbial landscape: periphytic algal stimulation of litter-associated microbial decomposers. Ecology 95: 749–762.

    Article  PubMed  Google Scholar 

  • Liess, A. & H. Hillebrand, 2004. Direct and indirect effects in herbivore–periphyton interactions. Archiv für Hydrobiologie 159: 433–453.

    Article  Google Scholar 

  • Liess, A. & A. L. Haglund, 2007. Periphyton responds differentially to nutrients recycled in dissolved or faecal pellet form by the snail grazer Theodoxus fluviatilis. Freshwater Biology 52: 1997–2008.

    Article  Google Scholar 

  • Liess, A. & M. Kahlert, 2007. Grastropod grazers and nutrients, but not light, interact in determining periphytic algal diversity. Oecologia 152: 101–111.

    Article  PubMed  Google Scholar 

  • Liess, A., J. Olsson, M. Quevedo, P. Eklöv, T. Vrede & H. Hillebrand, 2006. Food web complexity affects stoichiometric and trophic interactions. Oikos 114: 117–125.

    Article  Google Scholar 

  • McIntyre, P. B., A. S. Flecker, M. J. Vanni, J. M. Hood, B. W. Taylor & S. A. Thomas, 2008. Fish distributions and nutrient cycling in streams: can fish create biogeochemical hotspots? Ecology 89: 2335–2346.

    Article  PubMed  Google Scholar 

  • Metzger, E., C. Simonucci, E. Viollier, G. Sarazin, F. Pévot & D. Jézéquel, 2007. Benthic response to shellfish farming in Thau lagoon: pore water signature. Estuarine, Coastal and Shelf Science 72: 406–419.

    Article  Google Scholar 

  • Neely, R. K. & R. G. Wetzel, 1995. Simultaneous use of C-14 and H-3 to determine autotrophic production and bacterial protein production in periphyton. Microbial Ecology 30: 227–237.

    Article  CAS  PubMed  Google Scholar 

  • Nunes, J. P., J. Seixas, J. J. Keizer & A. J. D. Ferreira, 2009. Sensitivity of runoff and soil erosion to climate change in two Mediterranean watersheds. Part I: model parameterization and evaluation Hydrological Processes 23: 1202–1211.

    Google Scholar 

  • Pecqueur, D., F. Vidussi, E. Fouilland, E. Le Floc’h, S. Mas, C. Roques, C. Salles, M. G. Tournoud & B. Mostajir, 2011. Dynamics of microbial planktonic food web components during a river flash flood in a Mediterranean coastal lagoon. Hydrobiologia 673: 13–27.

    Article  CAS  Google Scholar 

  • Pengerud, B., E. F. Skjoldal & T. F. Thingstad, 1987. The reciprocal interaction between degradation of glucose and ecosystem structure. Studies in mixed chemostat cultures of marine bacteria, and bacterivorous nanoflagellates. Marine Ecology-Progress Series 35: 111–117.

    Article  CAS  Google Scholar 

  • Picot, B., G. Pena, C. Casellas, D. Bondon & J. Bontoux, 1990. Interpretation of the seasonal variations of nutrients in a Mediterranean lagoon: Étang de Thau. Hydrobiologia 207: 105–114.

    Article  CAS  Google Scholar 

  • Pijanowski, B. S., 1973. Salinity corrections for dissolved oxygen measurements. Environmental Science and Technology 7: 957–958.

    Article  CAS  Google Scholar 

  • Sanchez, E., C. Gallardo, M. A. Gaertner, A. Arribas & M. Castro, 2004. Future climate extreme events in the Mediterranean simulated by a regional climate model: a first approach. Global and Planetary Change 44: 163–180.

    Article  Google Scholar 

  • Sandberg, J., A. Andersson, S. Johansson & J. Wikner, 2004. Pelagic food web structure and carbon budget in the northern Baltic Sea: potential importance of terrigenous carbon. Marine Ecology-Progress Series 268: 13–29.

    Article  Google Scholar 

  • Sterner, R. W., J. J. Elser, E. J. Fee, S. J. Guildford & T. H. Chrzanowski, 1997. The light:nutrient ratio in lakes: the balance of energy and materials affects ecosystem structure and process. American Naturalist 150: 663–684.

    Article  CAS  PubMed  Google Scholar 

  • Thingstad, T. F., R. G. J. Bellerby, G. Bratbak, et al., 2008. Counterintuitive carbon-to-nutrient coupling in an Arctic pelagic ecosystem. Nature 455: 387–390.

    Article  CAS  PubMed  Google Scholar 

  • Vidussi, F., B. Mostajir, E. Fouilland, E. Le Floc'h, J. Nouguier, C. Roques, P. Got, D. Thibault-Botha, T. Bouvier & M. Troussellier, 2011. Effects of experimental warming and increased ultraviolet B radiation on the Mediterranean plankton food web. Limnology and Oceanography 56: 206–218.

  • Wetzel, R. G. & G. E. Likens, 2000. Limnological Analyses. Springer, New York.

    Book  Google Scholar 

  • Wikner, J. & A. Andersson, 2012. Increased freshwater discharge shifts the trophic balance in the coastal zone of the northern Baltic Sea. Global Change Biology 18: 2509–2519.

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Deininger, R. Lefebure, P. Mathisen, K. Lange, T. Bayer, and A. Schröder for help in field and laboratory. B. Mostajir, E. Le Floc’h, and F. Vidussi at the MEDIMEER mesocom facility provided technical support. J. Ask, S. Berger, and J. Nejstgaard provided helpful advice. The manuscript profited from comments by Sebastian Diehl. This research received funding from the European Union Seventh Framework Program (FP7/2007–2013) under Grant Agreement No. 228224, MESOAQUA and from the Oscar and Lili Lamms Minnes Stiftelse.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Liess.

Additional information

Handling editor: Sonja Stendera

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liess, A., Faithfull, C., Reichstein, B. et al. Terrestrial runoff may reduce microbenthic net community productivity by increasing turbidity: a Mediterranean coastal lagoon mesocosm experiment. Hydrobiologia 753, 205–218 (2015). https://doi.org/10.1007/s10750-015-2207-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2207-3

Keywords

Navigation