Skip to main content
Log in

The duality of fractals: roughness and self-similarity

  • Original paper
  • Published:
Theoretical Ecology Aims and scope Submit manuscript

Abstract

The fractal dimension (D HB) is an interesting metrics because it is supposed to quantify by a single value, scale independence and roughness of ecological objects. However, we show here that those two properties may be quantified by a single dimension only in some specific cases. In general, a non-integer D HB quantifies only the roughness, and self-similarity needs to be evidenced or postulated by other means. Second, we revisit some aspects of the practical estimation of D HB. We recommend the use of madogram instead of variogram for estimations based on geostatistics. We propose a simplification of its estimation for 2D fields and discuss its possible relationship with self-similarity. We finally underline the problem of scale and resolution. Field data recorded during a scientific acoustic survey on the North Sea herring are used for illustrations. The paper concludes on a synthesis of practical recommendations to ecologists when using fractal dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abraham ER (2001) The fractal branching of an arborescent sponge. Mar Biol 138:503–510

    Article  Google Scholar 

  • Atkinson RPD, Rhodes CJD, Macdonald W, Anderson RM (2002) Scale-free dynamics in the movement patterns of jackals. Oikos 98:134–140

    Article  Google Scholar 

  • Austin D, Bowen WD, McMillan JI (2004) Intraspecific variation in movement patterns: modeling individual behaviour in a large marine predator. Oikos 105:15–30

    Article  Google Scholar 

  • Bartumeus F (2007) Lévy processes in animal movements: an evolutionary hypothesis. Fractals 15:151–162

    Article  Google Scholar 

  • Bartumeus F, Levin SA (2008) Fractal reorientation clocks: linking animal behavior to statistical patterns of search. Proc Natl Acad Sci USA 105:19072–19077

    Article  PubMed  CAS  Google Scholar 

  • Bartumeus F, Catalan J, Fulco UL, Lyra ML, Viswanathan GM (2002) Optimizing the encounter rate in biological interactions: Lévy versus Brownian strategies. Phys Rev Lett 88:0979011–0979014

    Article  Google Scholar 

  • Bartumeus F, Peters F, Pueyo S, Marrasé C, Catalan J (2003) Helical Lévy walks: adjusting searching statistics to resource availability in microzooplankton. Proc Natl Acad Sci USA 100:12771–12775

    Article  PubMed  CAS  Google Scholar 

  • Bartumeus F, Da Luz MGE, Viswanathan GM, Catalan J (2005) Animal search strategies: a quantitative random-walk analysis. Ecology 86:3078–3087

    Article  Google Scholar 

  • Bascompte J, Vilà C (1997) Fractals and search paths in mammals. Landscape Ecol 12:213–221

    Article  Google Scholar 

  • Benhamou S (2004) How to reliably estimate the tortuosity of an animal's path: straightness, sinuosity, or fractal dimension? J Theor Biol 229:209–220

    Article  PubMed  Google Scholar 

  • Bertrand S, Burgos JM, Gerlotto F, Atiquipa J (2005) Lévy trajectories of fishers as an indicator of pelagic fish spatial distribution: the case of the Peruvian anchovy (Engraulis ringens) fishery. ICES J Mar Sci 62:477–482

    Article  Google Scholar 

  • Bertrand S, Bertrand A, Guevara-Carrasco R, Gerlotto F (2007) Scale-invariant movements of fishermen: the same foraging strategy as natural predators. Ecol Appl 17:331–337

    Article  PubMed  Google Scholar 

  • Bianchi S (2004) A new distribution-based test of self-similarity. Fractals 12:331–346

    Article  Google Scholar 

  • Bonabeau E, Dagorn L, Fréon P (1999) Scaling in animal group-size distributions. Proc Natl Acad Sci USA 96:4472–4477

    Article  PubMed  CAS  Google Scholar 

  • Boulingand G (1929) Sur la notion d’ordre de mesure d’un ensemble fermé. Bull Sci Math 52:185–192

    Google Scholar 

  • Bowne DR, White HR (2004) Searching strategy of the painted turtle Chrysemys picta across spatial scales. Anim Behav 68:1401–1409

    Article  Google Scholar 

  • Bradbury RH, Reichelt RE (1983) Fractal dimension of a coral reef at ecological scales. Mar Ecol Prog Ser 10:169–171

    Article  Google Scholar 

  • Bruno R, Raspa G (1989) Geostatistical characterization of fractal models of surfaces. In: Armstrong M (ed) Geostatistics. Kluwer, Norwell, pp 77–89

    Google Scholar 

  • Chilès JP, Delfiner P (1999) Geostatistics: modeling spatial uncertainty. Wiley, New York

    Google Scholar 

  • Cody ML (1971) Finch flocks in the Mohave desert. Theor Popul Biol 163:161–172

    Google Scholar 

  • Cole BJ (1995) Fractal time in animal behaviour: the movement activity of Drosophila. Anim Behav 50:1317–1324

    Article  Google Scholar 

  • Cousens R, Wallinga J, Shaw M (2004) Are the spatial pattern of weeds scale-invariant? Oikos 107:251–264

    Article  Google Scholar 

  • Cuddington K, Yodzis P (2002) Predator–prey dynamics and movement in fractal environments. Am Nat 160:119–134

    Article  PubMed  Google Scholar 

  • Davenport J (2004) Fractal dimension estimation in studies of epiphytal and epilithic communities: strengths and weaknesses. In: Seuront L, Strutton PG (eds) Handbook of scaling methods in aquatic ecology. Measurement, analysis, simulation. CRC, Boca Raton, pp 245–256

    Google Scholar 

  • Davies S, Hall P (1999) Fractal analysis of surface roughness by using spatial data. J R Statist Soc B 61(1):3–37

    Article  Google Scholar 

  • Dicke M, Burrough PA (1988) Using fractal dimensions for characterizing tortuosity of animal trails. Physiol Entomol 13:393–398

    Article  Google Scholar 

  • Dowling NA, Hall SJ, Mitchell JG (2000) Foraging kinematics of barramundi during early stages of development. J Fish Biol 57:337–353

    Article  Google Scholar 

  • Dubuc B, Zucker SW, Tricot C, Quiniou JF, Wehbi D (1989) Evaluating the fractal dimension of surfaces. Proc R Soc Lond A 425:113–127

    Article  CAS  Google Scholar 

  • Dungan JL, Perry JN, Dale MRT, Legendre P, Citron-Pousty S, Fortin MJ, Jakomulska A, Miriti M, Rosenberg MS (2002) A balanced view of scale in spatial statistical analysis. Ecography 25:626–640

    Article  Google Scholar 

  • Edwards AM (2008) Using likelihood to test for Lévy flight search patterns and for general power-law distributions in nature. J Anim Ecol 77:1212–1222

    Article  PubMed  Google Scholar 

  • Edwards AM, Phillips RA, Watkins NW, Freeman MP, Murphy EJ, Afanasyev V, Buldyrev SV, da Luz MGE, Raposo EP, Stanley HE, Viswanathan GM (2007) Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer. Nature 449:1044–1049

    Article  PubMed  CAS  Google Scholar 

  • Erlandson J, Kostylev V (1995) Trail following, speed and fractal dimension of movement in a marine prosobranch, Littorina littorea, during a mating and a non-mating season. Mar Biol 122:87–94

    Article  Google Scholar 

  • Falconer KL (1990) Fractal geometry. Mathematical foundations and applications. Wiley, New York

    Google Scholar 

  • Fauchald P (1999) Foraging in a hierarchical patch system. Am Nat 153:603–613

    Article  Google Scholar 

  • Fortin M-J, Keitt TH, Maurer BA, Taper ML, Kaufman DM, Blackburn TM (2005) Species' geographic ranges and distributional limits: pattern analysis and statistical issues. Oikos 108:7–17

    Article  Google Scholar 

  • Fréon P, Misund OA (1999) Dynamics of pelagic fish distribution and behaviour: effects on fisheries and stock assessment. Blackwell Science, Oxford

    Google Scholar 

  • Fréon P, Cury P, Shannon LJ, Roy C (2005) Sustainable exploitation of small pelagic fish stocks challenged by environmental and ecosystem changes: a review. Bull Mar Sci 76:385–462

    Google Scholar 

  • Fritz H, Said S, Weimerskirch H (2003) Scale-dependent hierarchical adjustments of movement patterns in a long-range foraging seabird. Proc R Soc B 270:1143–1148

    Article  PubMed  Google Scholar 

  • Frontier S (1985) Diversity and structure in aquatic ecosystems. Oceanogr Mar Biol 23:253–312

    Google Scholar 

  • Frontier S (1994) Species diversity as a fractal property of biomass. In: Novak MM (ed) Fractals in the natural and applied sciences. Elsevier, New-York, pp 11–127

    Google Scholar 

  • Gamarra JGP (2005) Metapopulations in multifractal landscapes: on the role of spatial aggregation. Proc R Soc B 272:1815–1822

    Article  PubMed  Google Scholar 

  • Gautestad AO, Mysterud I (1993) Physical and biological mechanisms in animal movement processes. J Appl Ecol 30:523–535

    Article  Google Scholar 

  • Gautestad AO, Mysterud I (2005) Intrinsic scaling complexity in animal dispersion and abundance. Am Nat 165:44–55

    Article  PubMed  Google Scholar 

  • Gee JM, Warwick RM (1994a) Body-size distribution in a marine metazoan community and the fractal dimensions of macroalgae. J Exp Mar Biol Ecol 178:247–259

    Article  Google Scholar 

  • Gee JM, Warwick RM (1994b) Metazoan community structure in relation to the fractal dimensions of marine macroalgae. Mar Ecol Prog Ser 103:141–150

    Article  Google Scholar 

  • Gerlotto F, Paramo J (2003) The three-dimensional morphology and internal structure of clupeid schools as observed using vertical scanning multibeam sonar. Aquat Living Resour 16:113–122

    Article  Google Scholar 

  • Gisiger T (2001) Scale invariance in biology: coincidence or footprint of a universal mechanism? Biol Rev 76:161–209

    Article  PubMed  CAS  Google Scholar 

  • Halley JM, Hartley S, Kallimanis AS, Kunin WE, Lennon JJ, Sgardelis SP (2004) Uses and abuses of fractal methodology in ecology. Ecol Lett 7:254–271

    Article  Google Scholar 

  • Johnson AR, Wiens JA, Milne BT, Crist TO (1992) Animal movements and population dynamics in heterogeneous landscapes. Landscape Ecol 7:63–75

    Article  Google Scholar 

  • Leduc A, Prairie YT, Bergeron Y (1994) Fractal dimension estimates of a fragmented landscape: source of variability. Landscape Ecol 9(4):279–286

    Article  Google Scholar 

  • Li X, Passow U, Logan BE (1998) Fractal dimension of small (15–200 μm) particles in Eastern Pacific coastal waters. Deep-Sea Res Part I 45:115–131

    Article  Google Scholar 

  • Mandelbrot BB (1975) Les objets fractals: forme, hasard et dimension. Flammarion, Paris

    Google Scholar 

  • Mandelbrot BB (1977) Fractals: forms, chance and dimension. Freeman, San Francisco

    Google Scholar 

  • Mårell A, Ball JP, Hofgaard A (2002) Foraging and movement paths of female reindeer: insights from fractal analysis, correlated random walks and Lévy flights. Can J Zool 80:854–865

    Article  Google Scholar 

  • Mark DM (1984) Fractal dimension of a coral reef at ecological scales: a discussion. Mar Ecol Prog Ser 14:293–294

    Article  Google Scholar 

  • Matheron G (1963) Principles of geostatistics. Econ Geol 58(8):1246–1266

    Article  CAS  Google Scholar 

  • Matheron G (1973) The intrinsic random functions and their applications. Adv Appl Probab 11(1):184–189

    Google Scholar 

  • Maurer BA, Taper ML (2002) Connecting geographical distributions with population processes. Ecol Lett 5:223–231

    Article  Google Scholar 

  • Mouillot D, Viale D (2001) Satellite tracking of a fin whale (Balaenoptera physalus) in the north-western Mediterranean Sea and fractal analysis of its trajectory. Hydrobiologia 452:163–171

    Article  Google Scholar 

  • Nams VO (2005) Using animal movement paths to measure response to spatial scale. Oecologia 143:179–188

    Article  PubMed  Google Scholar 

  • Pyke GH (1981) Optimal travel speed of animals. Am Nat 118:475–487

    Article  Google Scholar 

  • Ramos-Fernández G, Mateos JL, Miramontes O, Cocho G, Larralde H, Ayala-Orozco B (2004) Lévy walk patterns in the foraging movements of spider monkeys (Ateles geoffroyi). Behav Ecol Sociobiol 55:223–230

    Article  Google Scholar 

  • Rivoirard J, Simmonds J, Foote K, Fernandes P, Bez N (2000) Geostatistics for estimating fish abundance. Blackwell Science, Oxford

    Book  Google Scholar 

  • Russel RW, Hunt GL, Coyle KO, Cooney RT (1992) Foraging in a fractal environment: spatial patterns in a marine predator–prey system. Landscape Ecol 7:195–209

    Article  Google Scholar 

  • Seuront L (1998) Fractals and multifractals: new tools to characterize space–time heterogeneity in marine ecology. Océanis 24(3):123–158

    Google Scholar 

  • Seuront L (2010) Fractals and multifractals in ecology and aquatic science. CRC, New York

    Google Scholar 

  • Seuront L, Lagadeuc Y (1997) Characterisation of space–time variability in stratified and mixed coastal waters (Baie des Chaleurs, Quebec, Canada): application of fractal theory. Mar Ecol Prog Ser 159:81–95

    Article  CAS  Google Scholar 

  • Seuront L, Lagadeuc Y (1998) Spatio-temporal structure of tidally mixed coastal waters: variability and heterogeneity. J Plankton Res 20:1387–1401

    Article  Google Scholar 

  • Seuront L, Schmitt FG, Brewer MC, Strickler JR, Souissi S (2004) From random walk to multifractal random walk in zooplankton swimming behavior. Zool Stud 43:498–510

    Google Scholar 

  • Simmonds EJ, Bailey M, Toresen R (1997) 1996 ICES coordinated acoustic survey of ICES divisions IIIa, IVa, IVb, and Via. International Council for the Exploration of the Sea, CM 1997/H:11

  • Siniff DB, Jenssen CR (1969) A simulation model of animal movement patterns. Adv Ecol Res 6:185–219

    Article  Google Scholar 

  • Stoyan D, Stoyan H (1994) Fractals, random shapes and point fields; methods of geometrical statistics. Wiley, Chichester

    Google Scholar 

  • Sugihara G, May RM (1990) Applications of fractals in ecology. Trends Ecol Evol 5:79–86

    Article  PubMed  CAS  Google Scholar 

  • Taylor CC, Taylor SJ (1991) Estimating the dimension of a fractal. J Roy Stat Soc B Met 53(2):353–364

    Google Scholar 

  • Tremblay Y, Roberts AJ, Costa DP (2007) Fractal landscape method: an alternative approach to measuring area-restricted searching behavior. J Exp Biol 210:935–945

    Article  PubMed  Google Scholar 

  • Tricot C (1982) Two definitions of fractional dimension. Math Proc Camb Philos Soc 91:57–74

    Article  Google Scholar 

  • Tricot C, Quiniou JF, Wehbi D, Roques-Carmes C, Dubuc B (1988) Evaluation de la dimension fractale d’un graphe. Rev Phys Appl 23:111–124

    Google Scholar 

  • Tsuda A (1995) Fractal distribution of an oceanic copepod Neocalanus cristatus in the Subarctic Pacific. J Oceanogr 51:261–266

    Article  Google Scholar 

  • Turchin P (1996) Fractal analyses of animal movement: a critique. Ecology 77(7):2086–2090

    Article  Google Scholar 

  • Van Ballenberghe V (1983) Extraterritorial movements and dispersal of wolves in south central Alaska. J Mammal 64:168–171

    Article  Google Scholar 

  • Vandermeer J, Stone L, Blasius B (2001) Categories of chaos and fractal basin boundaries in forced predator–prey models. Chaos Solitons Fractals 12:265–276

    Article  Google Scholar 

  • Viswanathan GM, Afanasyev V, Buldyrev SV, Murphy EJ, Prince PA, Stanley HE (1996) Lévy flight search patterns of wandering albatrosses. Nature 381:413–415

    Article  CAS  Google Scholar 

  • Wiens JA, Crist TO, With KA, Milne BT (1995) Fractal patterns of insect movements in microlandscape mosaics. Ecology 76:663–666

    Article  Google Scholar 

Download references

Acknowledgement

We would like to thank the Ecole des Mines de Paris, Centre des Géosciences in Fontainebleau-France, for having made available the slides prepared by Pr. G. Matheron for the seminar on fractals he gave in the early 1990s. These slides were of particular use for us whilst working on this subject. In particular, we fully endorsed his recommendation: “people are strongly requested not to fuse fractals (HB dimensions greater than topological ones), a local property and, self-similarity, a global property. One should always ask in which sense the word fractal is used”. The work also owes some helpful contributions from Christian Lantuéjoul, Ecole des Mines de Paris, Centre des Géosciences, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Bez.

Appendices

Appendix 1: Summary of the demonstration of the relevance of madogram for estimating D HB

Let us then consider one particular realisation of a one-dimensional random function Z(x) where x denotes a point in space. For simplicity, the demonstration made by Bruno and Raspa (1989) is made in 1D but it can be generalised to any dimension. Over a small running increment of distance h centred on x, the graph of this realisation can be covered with at most (this is where the principle of economy comes in) \( n(h) = \frac{{\left| {Z(x) - Z\left( {x + h} \right)} \right|}}{h} + 1 \) squares of side h. As there are 1/h such intervals over a unit distance interval, there is a total of \( n(h) \cdot \frac{1}{h} = \left| {Z(x) - Z\left( {x + h} \right)} \right| \cdot {h^{ - 2}} + {h^{ - 1}} \)covering squares. The HB measure is then obtained for the limit of h tending towards 0 of the surface area of these d-dimensional squares:

$$ H{B_{\rm{measure}}} = \mathop {{\lim }}\limits_{h \to 0} \left( {g(d) \cdot \left( {\left| {Z\left( {x + h} \right) - Z(x)} \right| \cdot {h^{d - 2}} + {h^{d - 1}}} \right)} \right) $$

Reminding that (1) the fractal dimension of a random function derives from the expected value of the HB measure obtained for each realisation, (2) the expectation can be exchanged with the lim, and finally (3) the first-order variogram also called madogram of a RF is

$$ {\gamma_1}(h) = \frac{1}{2} \cdot {\rm E}\left[ {\left| {{\rm Z}\left( {x + h} \right) - {\rm Z}(x)} \right|} \right], $$

one finally gets that D HB is obtained by considering the value d for which

$$ \mathop {{{ \lim }}}\limits_{{\rm{h}} \to {0}} { }{\gamma_1}(h) \cdot {h^{d - {\rm N}}} $$

is not degenerated. Considering that the behaviour of the madogram near the origin can be reduced to \( {\left| h \right|^\beta } \), we see that d must be such that \( \mathop {{{ \lim }}}\limits_{{\rm{h}} \to {0}} { }{\left| h \right|^{\beta + d - N}} \) is not degenerated which is achieved as long as \( \beta + d - N = 0 \). Finally, we find that the D BH estimate of Z(x) is

$$ {D_{HB}} = N - { }\beta $$

where β is the slope of the madogram in log-log scale.

Appendix 2: Equivalence is only possible with power laws

Let us show that the function φ is necessarily of the form φ(λ) = λψ.

In one hand, by equivalence, we have:

$$ Z\left( {{\lambda_1}{\lambda_2}x} \right) \equiv \varphi \left( {{\lambda_1}} \right)Z\left( {{\lambda_2}x} \right) \equiv \varphi \left( {{\lambda_1}} \right)\varphi \left( {{\lambda_2}} \right)Z(x) $$

But, in the other hand, we have that:

$$ Z\left( {{\lambda_1}{\lambda_2}x} \right) \equiv \varphi \left( {{\lambda_1}{\lambda_2}} \right)Z(x) $$

The function φ must then be such that

$$ \varphi \left( {{\lambda_1}} \right)\varphi \left( {{\lambda_2}} \right) = \varphi \left( {{\lambda_1}{\lambda_2}} \right) $$

which implies that φ is of the form φ(λ) = λ ψ.

Appendix 3: Checking that W(x) is a Levy process

This section considers 1D random functions.

Let Z(x) be a stationary random function with 0 mean and variance σ 2:

$$ {\hbox{Var}}\left\{ {Z(x)} \right\} = {\hbox{Var}}\left\{ {Z\left( {\ln x} \right)} \right\} = {\sigma^2}. $$

And let W(x) be a non-stationary random function defined by

$$ \begin{gathered} W(x) = {x^\psi }Z\left( {\ln \left| x \right|} \right)\quad \quad, x \in \mathbb{R} \hfill \\{\hbox{E}}\left\{ {W(x)} \right\} = 0 \hfill \\{\rm var} \left\{ {W(x)} \right\} = {x^{2\psi }}{\sigma^2} \hfill \\\end{gathered} $$

Levy processes are such that disjoint increments are independent. In particular, for W(x) to be a Lévy process, this implies that:

$$ {\hbox{Cov}}\left\{ {W(x),W\left( {x \vee y} \right) - W\left( {x \wedge y} \right)} \right\} = 0\quad \quad \forall \left( {x,y} \right) \in \left( {\mathbb{R},\mathbb{R}} \right) $$

so that the non-stationary covariance of W(x) should be of the form

$$ \begin{gathered} {C_W}\left( {x,y} \right) = {\hbox{Cov}}\left\{ {W(x),W(y)} \right\} \\= {\hbox{Cov}}\left\{ {W\left( {x \wedge y} \right),W\left( {x \wedge y} \right) + W\left( {x \vee y} \right) - W\left( {x \wedge y} \right)} \right\} \\= {\sigma^2} \cdot {(x \wedge y)^{2\psi }} \\\end{gathered} $$

Given the above definition, we get that

$$ {C_W}\left( {x,y} \right) = {\left( {xy} \right)^\psi }{\hbox{Cov}}\left\{ {Z\left( {\ln x} \right),Z\left( {\ln y} \right)} \right\} = {\left( {xy} \right)^\psi }{C_Z}\left( {\ln \frac{{x \vee y}}{{x \wedge y}}} \right) $$

Taking the following covariance for Z(x)

$$ {C_Z}(h) = {\sigma^2} \cdot {e^{ - \psi \cdot \left| h \right|}} $$

gives

$$ {C_W}\left( {x,y} \right) = {\sigma^2} \cdot {\left( {xy} \right)^\psi }{\left( {\frac{{x \vee y}}{{x \wedge y}}} \right)^{ - \psi }} = {\sigma^2} \cdot {\left( {x \wedge y} \right)^{2\psi }} $$

One gets full characterisation of the random functions through their covariance functions as long as Gaussian random functions are used.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bez, N., Bertrand, S. The duality of fractals: roughness and self-similarity. Theor Ecol 4, 371–383 (2011). https://doi.org/10.1007/s12080-010-0084-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12080-010-0084-y

Keywords

Navigation