Skip to main content

Advertisement

Log in

The Value of Satellite-Based Active Fire Data for Monitoring, Reporting and Verification of REDD+ in the Lao PDR

  • Published:
Human Ecology Aims and scope Submit manuscript

Abstract

Shifting cultivation is a dominant land-use system in Laos, and fire is the tool commonly used to clear fallow vegetation for subsequent cultivation. We assessed the feasibility of active fire data derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) for monitoring fires in Laos. Specifically, we investigated the potential of the active fire data as input into monitoring, reporting and verification (MRV) systems to assess the effectiveness of measures related to Reducing Emissions from Deforestation and Forest Degradation plus the enhancement of forest carbon stocks (REDD+). Our qualitative and quantitative accuracy assessments of the fire data yielded mixed results with varying degrees of undetected fires and false detections. Hence, at IPCC Tier 3, the uncertainties inherent in the detection accuracy become too large. Active fire data can be valuable for supporting national-level MRV at Tier 2 in combination with auxiliary data for characterizing fire-dependent local land-use systems, such as shifting cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Because of the data gaps, all calculations conservatively approximate fire patterns and should not be interpreted as comprehensive fire counts.

  2. See http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml

  3. http://www.earthobservations.org/geonetcast.shtml

References

  • Andreae, M. O., and Merlet, P. (2001). Emission of Trace Gases and Aerosols from Biomass Burning. Global Biogeochemical Cycles 15: 955–966.

    Article  Google Scholar 

  • Aragao, L. E. O. C., and Shimabukuro, Y. E. (2010). The Incidence of Fire in Amazonian Forests with Implications for REDD. Science 328: 1275–1278.

    Article  Google Scholar 

  • Asner, G. P., Powell, G. V. N., Mascaro, J., Knapp, D. E., Clark, J. K., Jacobson, J., Kennedy-Bowdoin, T., Balaji, A., Paez-Acosta, G., Victoria, E., Secada, L., Valqui, M., and Hughes, R. F. (2010). High-Resolution Forest Carbon Stocks and Emissions in the Amazon. Proceedings of the National Academy of Sciences 107: 16738–16742.

    Article  Google Scholar 

  • Baker, P. J., and Bunyavejchewin, S. (2009). Fire behavior and fire effects across the forest landscape of continental Southeast Asia. In Cochrane, M. A. (ed.), Tropical Fire Ecology. Springer, Berlin Heidelberg, pp. 311–334.

    Chapter  Google Scholar 

  • Balch, J. K., Nepstad, D. C., Brando, P. M., and Alencar, A. (2010). Comment on “The Incidence of Fire in Amazonian Forests with Implications for REDD”. Science 330: 1627.

    Article  Google Scholar 

  • Ballhorn, U., Siegert, F., Mason, M., and Limin, S. (2009). Derivation of Burn Scar Depths and Estimation of Carbon Emissions with LIDAR in Indonesian Peatlands. Proceedings of the National Academy of Sciences 106: 21213–21218.

    Article  Google Scholar 

  • Boschetti, L., and Roy, D. P. (2008). Defining a Fire Year for Reporting and Analysis of Global Interannual Fire Variability. Journal of Geophysical Research 113: G03020.

    Article  Google Scholar 

  • Bruun, T., de Neergaard, A., Lawrence, D., and Ziegler, A. (2009). Environmental Consequences of the Demise in Swidden Cultivation in Southeast Asia: Carbon Storage and Soil Quality. Human Ecology 37: 375–388.

    Article  Google Scholar 

  • Crutzen, P. J., and Andreae, M. O. (1990). Biomass Burning in the Tropics: Impact on Atmospheric Chemistry and Biogeochemical Cycles. Science 250: 1669–1678.

    Article  Google Scholar 

  • Csiszar, I. A., Morisette, J. T., and Giglio, L. (2006). Validation of Active Fire Detection from Moderate-Resolution Satellite Sensors: The MODIS Example in Northern Eurasia. IEEE Transactions on Geoscience and Remote Sensing 44: 1757–1764.

    Article  Google Scholar 

  • Davies, D. K., Ilavajhala, S., Wong, M. M., and Justice, C. O. (2009). Fire Information for Resource Management System: Archiving and Distributing MODIS Active Fire Data. IEEE Transactions on Geoscience and Remote Sensing 47: 72–79.

    Article  Google Scholar 

  • DeFries, R. (2008). Terrestrial Vegetation in the Coupled Human-Earth System: Contributions of Remote Sensing. Annual Review of Environment and Resources 33: 369–390.

    Article  Google Scholar 

  • Denman, K. L., Brasseur, G., Chidthaisong, A., Ciaism, P., Cox, P. M., Dickinson, R. E., Hauglustaine, D., Heinze, C., Holland, E., Jacob, D., Lohmann, U., Ramachandran, S., Dias, P. L. d. S., Wofsy, S. C., and Zhang, X. (2007). Couplings between changes in the climate system and biogeochemistry. In Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., and Miller, H.L. (eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, United Kingdom and New York, NY, USA.: Cambridge University Press.

  • Diggle, P. (1985). A Kernel Method for Smoothing Point Process Data. Journal of the Royal Statistical Society. Series C (Applied Statistics) 34: 138–147.

    Google Scholar 

  • Douangboupha, B., Aplin, K. P., and Singleton, G. R. (2002). Rodent outbreaks in the uplands of Laos: analysis of historical patterns and the identity of nuu khii. In Singleton, G. R., Hinds, L. A., Krebs, C. J., and Spratt, D. M. (eds.), Rats, Mice and People: Rodent Biology and Management. Australian Centre for International Agricultural Research, Canberra.

    Google Scholar 

  • Eva, H., and Lambin, E. F. (2000). Fires and Land-Cover Change in the Tropics:A Remote Sensing Analysis at the Landscape Scale. Journal of Biogeography 27: 765–776.

    Article  Google Scholar 

  • Giglio, L. (2010). MODIS Collection 5 Active Fire Product User’s Guide Version 2.4. Science Systems and Applications, Inc., University of Maryland, Department of Geography.

  • Giglio, L., Descloitres, J., Justice, C. O., and Kaufman, Y. J. (2003). An Enhanced Contextual Fire Detection Algorithm for MODIS. Remote Sensing of Environment 87: 273–282.

    Article  Google Scholar 

  • Giglio, L., Csiszar, I., and Justice, C. O. (2006a). Global Distribution and Seasonality of Active Fires as Observed with the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) Sensors. Journal of Geophysical Research 111: G02016.

    Article  Google Scholar 

  • Giglio, L., van der Werf, G. R., Randerson, J. T., Collatz, G. J., and Kasibhatla, P. (2006b). Global Estimation of Burned Area Using MODIS Active Fire Observations. Atmospheric Chemistry and Physics 6: 957–974.

    Article  Google Scholar 

  • GOFC-GOLD (2009). A Sourcebook of Methods and Procedures for Monitoring and Reporting Anthropogenic Greenhouse Gas Emissions and Removals Caused by Deforestation, Gains and Losses of Carbon Stocks in Forests Remaining Forests, and Forestation. Natural Resources Canada, Alberta, Canada.

    Google Scholar 

  • Goldammer, J. (2006). Fire ecology of the recent anthropocene. In Ehlers, E., and Krafft, T. (eds.), Earth System Science in the Anthropocene. Springer, Berlin Heidelberg, pp. 63–85.

    Chapter  Google Scholar 

  • Hawbaker, T. J., Radeloff, V. C., Syphard, A. D., Zhu, Z., and Stewart, S. I. (2008). Detection Rates of the MODIS Active Fire Product in the United States. Remote Sensing of Environment 112: 2656–2664.

    Article  Google Scholar 

  • Hurni, K., Hett, C., Heinimann, A., Messerli, P., and Wiesmann, U. (this issue). Dynamics of Shifting Cultivation Landscapes in Northern Lao PDR Between 2000 and 2009 Based on an Analysis of MODIS Time Series and Landsat Images. Human Ecology.

  • Justice, C., Giglio, L., Boschetti, L., Roy, D., Csiszar, I., Morisette, J., and Kaufman, Y. (2006). MODIS Fire Products Algorithm Theoretical Background Document. http://modis-fire.umd.edu/BA_usermanual.html (last accessed 28 April 2010).

  • Kaufman, Y. J., Justice, C. O., Flynn, L. P., Kendall, J. D., Prins, E. M., Giglio, L., Ward, D. E., Menzel, W. P., and Setzer, A. W. (1998). Potential Global Fire Monitoring from EOS-MODIS. Journal of Geophysical Research 103: 32215–32238.

    Article  Google Scholar 

  • Koren, I., Remer, L. A., and Longo, K. (2007). Reversal of Trend of Biomass Burning in the Amazon. Geophysical Research Letters 34: L20404.

    Article  Google Scholar 

  • Langner, A., and Siegert, F. (2009). Spatiotemporal Fire Occurrence in Borneo over a Period of 10 years. Global Change Biology 15: 48–62.

    Article  Google Scholar 

  • Lee, T. F., Miller, S. D., Schueler, C., and Miller, S. (2006). NASA MODIS Previews NPOESS VIIRS Capabilities. Weather and Forecasting 21: 649–655.

    Article  Google Scholar 

  • London, S. (2003). Community-based fire management in Lao People’s Democratic Republic: past, present and future. In FAO, 97-118 (ed.), Community-Based Fire Management: Case Studies from China, The Gambia, Honduras, India, the Lao People’s Democratic Republic and Turkey. FAO Regional Office for Asia and the Pacific, Bangkok, pp. 97–118.

    Google Scholar 

  • Maniatis, D., and Mollicone, D. (2010). Options for Sampling and Stratification for National Forest Inventories to Implement REDD+ under the UNFCCC. Carbon Balance and Management 5: 9.

    Article  Google Scholar 

  • Messerli, P., Heinimann, A., and Epprecht, M. (2009). Finding Homogeneity in Heterogeneity—A New Approach to Quantifying Landscape Mosaics Developed for the Lao PDR. Human Ecology 37: 291–304.

    Article  Google Scholar 

  • Miettinen, J., Langner, A., and Siegert, F. (2007). Burnt Area Estimation for the Year 2005 in Borneo Using Multi-Resolution Satellite Imagery. International Journal of Wildland Fire 16: 45–53.

    Article  Google Scholar 

  • Morisette, J. T., Giglio, L., Csiszar, I., and Justice, C. O. (2005). Validation of the MODIS Active Fire Product over Southern Africa with ASTER Data. International Journal of Remote Sensing 26: 4239–4264.

    Article  Google Scholar 

  • Page, S. E., Siegert, F., Rieley, J. O., Boehm, H.-D. V., Jaya, A., and Limin, S. (2002). The Amount of Carbon Released from Peat and Forest Fires in Indonesia during 1997. Nature 420: 61–65.

    Article  Google Scholar 

  • Penman, J., Gytarsky, M., Hiraishi, T., Krug, T., Kruger, D., Pipatti, R., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., and Wagner , F. (2003). Good Practice Guidance for Land Use, Land-Use Change and Forestry http://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf.html (last accessed 20 March 2008).

  • Ramanathan, V., and Carmichael, G. (2008). Global and Regional Climate Changes due to Black Carbon. Nature Geosciences 1: 221–227.

    Article  Google Scholar 

  • Roy, D. P., Lewis, P. E., and Justice, C. O. (2002). Burned Area Mapping Using Multi-Temporal Moderate Spatial Resolution Data–A Bi-Directional Reflectance Model-Based Expectation Approach. Remote Sensing of Environment 83: 263–286.

    Article  Google Scholar 

  • Roy, D. P., Boschetti, L., Justice, C. O., and Ju, J. (2008). The Collection 5 MODIS Burned Area Product – Global Evaluation by Comparison with the MODIS Active Fire Product. Remote Sensing of Environment 112: 3690–3707.

    Article  Google Scholar 

  • Schroeder, W., Morisette, J. T., Csiszar, I., Giglio, L., Morton, D., and Justice, C. O. (2005). Characterizing Vegetation Fire Dynamics in Brazil through Multisatellite Data: Common Trends and Practical Issues. Earth Interactions 9: 1–26.

    Article  Google Scholar 

  • Schroeder, W., Prins, E., Giglio, L., Csiszar, I., Schmidt, C., Morisette, J., and Morton, D. (2008). Validation of GOES and MODIS Active Fire Detection Products using ASTER and ETM+ Data. Remote Sensing of Environment 112: 2711–2726.

    Article  Google Scholar 

  • Siegert, F., Ruecker, G., Hinrichs, A., and Hoffmann, A. A. (2001). Increased Damage from Fires in Logged Forests during Droughts caused by El Nino. Nature 414: 437–440.

    Article  Google Scholar 

  • Tanpipat, V., Honda, K., and Nuchaiya, P. (2009). MODIS Hotspot Validation over Thailand. Remote Sensing 1: 1043–1054.

    Article  Google Scholar 

  • Tansey, K., Beston, J., Hoscilo, A., Page, S. E., and Paredes Hernández, C. U. (2008). Relationship between MODIS Fire Hot Spot Count and Burned Area in a Degraded Tropical Peat Swamp Forest in Central Kalimantan, Indonesia. Journal of Geophysical Research 113: D23112.

    Article  Google Scholar 

  • van der Werf, G. R., Morton, D. C., DeFries, R. S., Olivier, J. G. J., Kasibhatla, P. S., Jackson, R. B., Collatz, G. J., and Randerson, J. T. (2009). CO2 Emissions from Forest Loss. Nature Geosciences 2: 737–738.

    Article  Google Scholar 

  • van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., Morton, D. C., DeFries, R. S., Jin, Y., and van Leeuwen, T. T. (2010). Global Fire Emissions and the Contribution of Deforestation, Savanna, Forest, Agricultural, and Peat Fires (1997–2009). Atmospheric Chemistry and Physical Discussion 10: 16153–16230.

    Article  Google Scholar 

  • Van Gansberghe, D. (2005). Shifting cultivation systems and practices in the Lao PDR: A sourcebook. In NAFRI, NAFES & NUOL (eds.). Improving Livelihoods in the Uplands of the Lao PDR. Vientiane, Lao PDR.

  • Vermote, E., Ellicott, E., Dubovik, O., Lapyonok, T., Chin, M., Giglio, L., and Roberts, G. J. (2009). An Approach to Estimate Global Biomass Burning Emissions of Organic and Black Carbon from MODIS Fire Radiative Power. Geophysical Research Letters 114: D18205.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Climate Protection through Avoided Deforestation Project (CliPAD) with funding from the German Ministry for Economic Cooperation and Development (BMZ) through the German International Cooperation (GIZ), implemented by the Department of Forestry of the Lao PDR. We acknowledge support from the project entitled Impacts of Reducing Emissions from Deforestation and Forest Degradation and Enhancing Carbon Stocks (I-REDD+). I-REDD + is funded by the European Community’s Seventh Framework Research Programme. More information can be found on the web site: http://www.i-redd.eu. We particularly thank Dirk Pflugmacher, Gernot Rücker and two anonymous reviewers for their excellent comments on earlier versions of this paper. We are indebted to Patrick Hostert, Andreas Heinimann, Gabriel Eickhoff, Kasper Hurni and Conny Hett for comments, discussions and support. We also thank Kasper, Conny and Anouxay Phommalath as well as the volunteers from “Weltwärts” for the collection of ground control points. Discussions on the Google group LaoFAB have generated a number of highly valuable responses, and we acknowledge all experts who replied, particularly the contributions by Dirk Van Gansberghe and Oliver Ducourtieux. Finally, we gratefully acknowledge the Participatory Land and Forest Management Project for Reducing Deforestation in Lao PDR (PAREDD) of the Japan International Cooperation Agency (JICA), which provided the plot-level dataset.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, D., Suess, S., Hoffmann, A.A. et al. The Value of Satellite-Based Active Fire Data for Monitoring, Reporting and Verification of REDD+ in the Lao PDR. Hum Ecol 41, 7–20 (2013). https://doi.org/10.1007/s10745-013-9565-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10745-013-9565-0

Keywords

Navigation