Skip to main content

Advertisement

Log in

First geophysical and shallow ice core investigation of the Kazbek plateau glacier, Caucasus Mountains

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

First-ever ice core drilling at Mt. Kazbek (Caucasus Mountains) took place in the summer of 2014. A shallow ice core (18 m) was extracted from a plateau at ~4500 m a.s.l. in the vicinity of the Mt. Kazbek summit (5033 m a.s.l.). A detailed radar survey showed that the maximum ice thickness at this location is ~250 m. Borehole temperature of −7 °C was measured at 10 m depth. The ice core was analyzed for oxygen and deuterium isotopes and dust concentration. From the observed seasonal cycle, it was determined that the ice core covers the time interval of 2009–2014, with a mean annual snow accumulation rate of 1800 mm w. eq. Multiple melt layers have been detected. δ18O values vary from −25 to −5‰. The dust content was determined using a particle sizing and counting analyzer. The dust layers were investigated using scanning electron microscopy and X-ray diffraction analysis. Dust can be separated into two categories by its origin: local and distant. Samples reflecting predominantly local origin consisted mainly of magmatic rocks, while clay minerals were a characteristic of dust carried over large distances, from the deserts of the Middle East and Sahara. The calculated average dust flux over three years at Kazbek was of 1.3 mg/cm2 a−1. Neither δ18O nor dust records appear to have been affected by summer melting. Overall, the conditions on Kazbek plateau and the available data suggest that the area offers good prospects of future deep drilling in order to obtain a unique environmental record.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aizen VB, Aizen EM, Joswiak DR, Fujita K, Takeuchi N, Nikitin SA (2006) Climatic and atmospheric circulation pattern variability from ice-core isotope/geochemistry records (Altai, Tien Shan and Tibet). Ann Glaciol 43:49–60

    Article  Google Scholar 

  • Bish DL, Post JE (1993) Quantitative mineralogical analysis using the Rietveld full-pattern fitting method. Am Mineral 78:932–940

    Google Scholar 

  • Chernyshev IV, Lebedev VA, Bubnov SN, Arakelyants MM, Goltsman YuV (2002) Isotopic geochronology of Quaternary volcanic eruptions in the Greater Caucasus. Geochem Int 40:1–16

    Google Scholar 

  • Davis ME, Thompson LG, Yao T, Wang N (2005) Forcing of the Asian monsoon on the Tibetan Plateau: evidence from high resolution ice core and tropical coral records. J Geophys Res 110:D04101. doi:10.1029/2004JD004933

    Article  Google Scholar 

  • Davitaya FF (1969) Atmospheric dust content as a factor affecting glaciation and climatic change. Ann Assoc Amer Geogr 59(3):552–560

    Article  Google Scholar 

  • Doscher A, Gaggeler HW, Schotterer U, Schwikowski M (1995) A 130 years deposition record of sulfate, nitrate and chloride from a high-alpine glacier. Water Air Soil Pollut 85:603–609

    Article  Google Scholar 

  • Dritz VA, Kossovskaya AG (1990) Glinistie minerali: smektiti, smeshanosloinie obrazovaniyz. Nauka, Moscow, p 214

    Google Scholar 

  • Eichler A, Schwikowski M, Gäggeler HW, Furrer V, Synal H-A, Beer J, Saurer M, Funk M (2000) Glaciochemical dating of an ice core from upper Grenzgletscher (4200 m a.s.l.). J Glaciol 46:507–515

    Article  Google Scholar 

  • Eichler A, Schwikowski M, Gäggeler HW (2001) Meltwater induced relocation of chemical species in Alpine firn. Tellus B 53:192–203

    Article  Google Scholar 

  • Eichler A, Tobler L, Eyrikh S, Gramlich G, Malygina N, Papina T, Schwikowski M (2012) Three centuries of Eastern European and Altai lead emissions recorded in a Belukha ice core. Environ Sci Technol 46:4323–4330

    Article  Google Scholar 

  • Eichler A, Tobler L, Eyrikh S, Malygina N, Papina T, Schwikowski M (2014) Icecore based assessment of historical anthropogenic heavy metal (Cd, Cu, Sb, Zn) emissions in the soviet union. Environ Sci Technol 48:2635–2642

    Article  Google Scholar 

  • EPICA Community Members (2006) One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature 444:195–198

    Article  Google Scholar 

  • Evans SG, Tutubalina OV, Drobyshev VN, Chernomorets SS, McDougall S, Petrakov DA, Hungr O (2009) Catastrophic detachment and high-velocity long-runout flow of Kolka Glacier, Caucasus Mountains, Russia in 2002. Geomorphology 105:314–321

    Article  Google Scholar 

  • Gabrielli P, Carturan L, Gabrieli J, Dinale R, Krainer K, Hausmann H, Davis M, Zagorodnov V, Seppi R, Barbante C, Dalla Fontana G, Thompson LG (2010) Atmospheric warming threatens the untapped glacial archive of Ortles mountain, South Tyrol. J Glaciol 56:843–853

    Article  Google Scholar 

  • Gabrielli P, Barbante C, Carturan L, Cozzi G, Dalla Fontana G et al (2012) Discovery of cold ice in a new drilling site in the Eastern European Alps. Geogr Fis Dinam Quat 35:101–105

    Google Scholar 

  • Huggel C, Zgraggen-Oswald S, Haeberli W, Kääb A, Polkvoj A, Galushkin I, Evans SG (2005) The 2002 rock/ice avalanche at Kolka/Karmadon, Russian Caucasus: assessment of extraordinary avalanche formation and mobility, and application of QuickBird satellite imagery. Nat Hazards Earth Syst Sci 5:173–187

    Article  Google Scholar 

  • Jenk TM, Szidat S, Schwikowski M, Gäggeler HW, Brütsch S, Wacker L, Synal H-A, Saurer M (2006) Radiocarbon analysis in an Alpine ice core: record of anthropogenic and biogenic contributions to carbonaceous aerosols in the past (1650–1940). Atmos Chem Phys 6:5381–5390

    Article  Google Scholar 

  • Jouzel J (2013) A brief history of ice core science over the last 50 yr. Clim Past 9:2525–2547

    Article  Google Scholar 

  • Kang S, Zhang Y, Qin D, Ren J, Zhang Q, Grigholm B, Mayewski P (2007) Recent temperature increase recorded in an ice core in the source region of Yangtze River. Chin Sci Bull 52:825–831

    Article  Google Scholar 

  • Kaspari S, Mayewski PA, Kang S, Sneed S, Hou S, Hooke R, Kreutz K, Introne D, Handley M, Maasch K, Qin D, Ren J (2007) Reduction in northward incursions of the South Asian monsoon since 1400 AD inferred from a Mt. Everest ice core. Geophys Res Lett 34:L16701

    Google Scholar 

  • Khokhlova OS, Khokhlov AA, Oleynik SA, Gabuev TA, Malashev VYu (2007) Paleosols from the groups of burial mounds provide paleoclimatic records of centennial to intercentennial time scale: a case study from the Early Alan cemeteries in the Northern Caucasus (Russia). Catena 71:477–486

    Article  Google Scholar 

  • Koerner RM (1997) Some comments on climatic reconstructions from ice cores drilled in areas of high melt. J Glaciol 43:90–97

    Article  Google Scholar 

  • Kotlyakov VM, Rototaeva OV, Desinov LV, Zotikov IA, Osokin NI (2002) Causes and effects of a catastrophic surge of Kolka Glacier in the Central Caucasus. Z Gletscherkd Glazialgeol 38:117–128

    Google Scholar 

  • Kutuzov S, Ginot P, Mikhalenko V, Shahgedanova M, Lavrentiev I (2017) Characteristics of dust deposition at high elevation sites recorded in shallow ice cores, Mt. Elbrus and Mt. Kazbek, Caucasus, Russia. Environ Res Lett (in preparation)

  • Kutuzov S, Shahgedanova M, Mikhalenko V, Ginot P, Lavrentiev I, Kemp S (2013) High-resolution provenance of desert dust deposited on Mt. Elbrus, Caucasus in 2009–2012 using snow pit and firn core records. Cryosphere 7:1481–1498

    Article  Google Scholar 

  • Kutuzov SS, Mikhalenko VN, Shahgedanova MV, Ginot P, Kozachek AV, Kuderina TM, Lavrentiev II, Popov GV (2014) Ways of far-distance dust transport onto Caucasian glaciers and chemical composition of snow on the Western plateau of Elbrus. Led i sneg 3:5–15 (in Russian)

    Google Scholar 

  • Lavrentiev II, Mkhalenko VN, Kutuzov SS (2010) Tolshina l’da i podledniy rel’ef Zapadnogo lednikovogo plato Elbrusa. Led i sneg 2:12–18 (in Russian)

    Google Scholar 

  • Legrand M, Preunkert S, May B, Guilhermet J, Hoffman H, Wagenbach D (2013) Major 20th century changes of the content and chemical speciation of organic carbon archived in Alpine ice cores: implications for the long-term change of organic aerosol over Europe. J Geophys Res-Atmos 118:3879–3890

    Article  Google Scholar 

  • Likhodeev DV, Mikhalenko VN (2012) Temperatura krovli magmaticheskoy kameri vulkana Elbrus. Geofizicheckie Issled 13:70–75 (in Russian)

    Google Scholar 

  • Luthi MP, Funk M (2001) Modelling heat ow in a cold, high altitude glacier: interpretation of measurements from Colle Gnifetti, Swiss Alps. J Glaciol 47:314–324

    Article  Google Scholar 

  • Mariani I, Eichler A, Jenk TM, Broennimann S, Auchmann R, Leuenberger MC, Schwikowski M (2014) Temperature and precipitation signal in two Alpine ice cores over the period 1961-2001. Clim Past 10:1093–1108

    Article  Google Scholar 

  • Matoba S, Shimbori K, Shiraiwa T (2014) Alpine ice-core drilling in the North Pacific region. Ann Glaciol 55:83–87

    Article  Google Scholar 

  • Maupetit F, Wagenbach D, Weddeling P, Delmas RJ (1995) Seasonal fluxes of major ions to a high altitude cold alpine glacier. Atmos Environ 29:1–9

    Article  Google Scholar 

  • Mikhalenko V, Sokratov S, Kutuzov S, Ginot P, Legrand M, Preunkert S, Lavrentiev I, Kozachek A, Ekaykin A, Faïn X, Lim S, Schotterer U, Lipenkov V, Toropov P (2015) Investigation of a deep ice core from the Elbrus western plateau, the Caucasus, Russia. Cryosphere 9:2253–2270

    Article  Google Scholar 

  • Moore DM, Reynolds RC Jr (1997) X-ray diffraction and the identification and analysis of clay minerals, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Nye JF (1963) Correction factor for accumulation measured by the thickness of the annual layers in an ice sheet. J Glaciol 4:785–788

    Article  Google Scholar 

  • Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM et al (1999) Climate and atmospheric history of the past 420,000 years from the Vostok Ice Core, Antarctica. Nature 399:429–436

    Article  Google Scholar 

  • Preunkert S, Wagenbach D, Legrand M, Vincent C (2000) Col du Dome (Mt. Blanc Massif, French Alps) suitability for ice-core studies in relation with past atmospheric chemistry over Europe. Tellus Ser B 52:993–1012

    Google Scholar 

  • Preunkert S, Legrand M, Wagenbach D (2001) Sulfate trends in a Col du Dome (French Alps) ice core: a record of anthropogenic sulfate levels in the European midtroposphere over the twentieth century. J Geophys Res-Atmos 106:31991–32004

    Article  Google Scholar 

  • Pushcharovskiy DY (2000) Rentgenografiya mineralov. Geoinformmark, Moscow, p 292

    Google Scholar 

  • Schotterer U, Fröhlich K, Gäggeler HW, Sandjordj S, Stichler W (1997) Isotope records from Mongolian and Alpine ice cores as climate indicators. Clim Change 36:519–530

    Article  Google Scholar 

  • Schotterer U, Stichler W, Graf W, Bürki H U, Gourcey L, Ginot P, Huber T (2002) Stable isotopes in alpine ice cores: do they record climate variability? In: Proceedings of an international symposium on the study of environmental change using isotope techniques, 23–27 April 2001, IAEA, Vienna

  • Schwikowski M, Brutsch S, Gaggeler HW, Schotterer U (1999) A high-resolution air chemistry record from an Alpine ice core: fiescherhorn glacier, Swiss Alps. J Geophys Res 104:13709–13719

    Article  Google Scholar 

  • Serebryany LR, Golodkovskaya NA, Orlov AV, Malyasova ES, Il’ves EO (1984) Kolebaniya lednikov i protsessy morenonakopleniya na Tsentralnom Kavkaze (Glacier variations and moraine accumulation: processes in Central Caucasus), Nauka, Moscow, 216 p. (in Russian)

  • Shahgedanova M, Kutuzov S, White K, Nosenko G (2013) Using the significant dust deposition event on the glaciers of Mt. Elbrus, Caucasus Mountains, Russia on 5 May 2009 to develop a method for dating and provenancing of desert dust events recorded in snow pack. Atmos Chem Phys 13:1797–1808

    Article  Google Scholar 

  • Solomina ON, Kalugin IA, Aleksandrin MYu, Bushueva IS, Darin AV, Dolgova EA, Jomelli V, Ivanov MN, Matskovsky VV, Ovchinnikov DV, Pavlova IO, Razumovsky LV, Chepurnaya AA (2013) Burenie osadkov ozera Kara-Kel’ (dolina reki Teberdy) I perspektivy rekonstruktsii istorii oledeneniya i klamata golotsena na Kavkaze (Coring of Karakel’ Lake sediments (Teberda River valley) and prospects for reconstruction of glaciation and Holocene climate history in the Caucasus). Led i sneg 2:102–111 (in Russian)

    Google Scholar 

  • Solomina ON, Kalugin IA, Darin AV, Chepurnaya AA, Alexandrin MY, Kuderina TM (2014) Ispol’zovaniye geokhimicheskogo i pyl’tsevogo analizov otlozheniy oz. Karakel’ dlya rekonstruktsii klimaticheskikh izmeneniy v doline r. Teberda (Severnyy Kavkaz) v pozdnem golotsene: vozmozhnosti i ogranicheniya (The implementation of geochemical and palynological analyses of the sediment core of Lake Karakyol for reconstructions of climatic changes in the valley of Teberda River (Northern Caucasus) during the Late Holocene: possibilities and restrictions)). Voprosy geografii 137. Gornyye issledovaniya. Gornyye regiony Severnoy Yevrazii. Razvitiye v usloviyakh global’nykh izmeneniy, Codex, Moscow. pp 234–266 (in Russian)

  • Thevenon F, Anselmetti FS, Bernasconi SM, Schwikowski M (2009) Mineral dust and elemental black carbon records from an Alpine ice core (Colle Gnifetti glacier) over the last millennium. J Geophys Res 114:D17102

    Article  Google Scholar 

  • Thompson LG, Yao T, Davis ME, Henderson KA, Mosley-Thompson E, Lin P-N, Beer J, Synal H-A, Cole-Dai J, Bolzan JF (1997) Tropical climate instability: the last glacial cycle from a Qinghai-Tibetan Ice core. Science 276:1821–1827

    Article  Google Scholar 

  • Thompson LG, Yao T, Mosley-Thompson E, Davis ME, Henderson KA, Lin P-N (2000) A high-resolution millennial record of the South Asian Monsoon from Himalayan ice cores. Science 289:1916–1919

    Article  Google Scholar 

  • Vasilenko E, Machío F, Lapazaran J, Navarro FJ, Frolovskiy K (2011) A compact lightweight multipurpose ground-penetrating radar for glaciological applications. J Glaciol 57:1113–1118

    Article  Google Scholar 

  • Vincent C, Le Meur E, Six D, Possenti P, Lefebvre E, Funk M (2007) Climate warming revealed by englacial temperatures at Col du Dome (4250 m, Mont Blanc area). Geophys Res Lett 34:L16502

    Article  Google Scholar 

  • Volodicheva NA (2002) The Caucasus. In: Shahgedanova M (ed) The physical geography of Northern Eurasia. Oxford University Press, Oxford, pp 284–313

    Google Scholar 

  • Wagenbach D, Geis K (1989) The mineral dust record in a high-altitude Alpine Glacier (Colle-Gnifetti, Swiss Alps). Paleoclimatology and paleometeorology: modern and past patterns of global atmospheric transport, Ed. Leinen M; Sarnthein M. NATO Adv Sci Inst Ser, Ser C Math Phys Sci 282:543–564

    Google Scholar 

  • Wagenbach D, Münnich KO, Schotterer U, Oeschger H (1988) The anthropogenic impact on snow chemistry at Colle Gnifetti, Swiss Alps. Ann Glaciol 10:183–187

    Article  Google Scholar 

  • Wu GJ, Zhang XL, Zhang CL, Gao SP, Li ZQ, Wang FT, Wang WB (2010) Concentration and composition of dust particles in surface snow at Urumqi Glacier No. 1. Eastern Tien Shan Global Planet Change 74:34–42

    Article  Google Scholar 

  • Wu GJ, Zhang CL, Zhang XL, Xu TL, Yan N, Gao SP (2015) The environmental implications for dust in high-alpine snow and ice cores in Asian mountains. Global Planet Change 124:22–29

    Article  Google Scholar 

  • Zagorodnov V, Nagornov O, Thompson LG (2006) Influence of air temperature on a glacier’s active-layer temperature. Ann Glaciol 43:285–291

    Article  Google Scholar 

  • Zemp M, Frey H, Gärtner-Roer I, Nussbaumer SU, Hoelzle M et al (2015) Historically unprecedented global glacier decline in the early 21st century. J Glaciol 61:745–762

    Article  Google Scholar 

  • Zhang Q, Kang S, Gabrielli P, Loewen M, Schwikowski M (2015) Vanishing high mountain glacial archives: challenges and perspectives. Environ Sci Technol 49:9499–9500. doi:10.1021/acs.est.5b03066

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. Maria Shahgedanova (University of Reading, UK) for providing critical comments on the early version of the manuscript. Critical suggestions by the two anonymous Reviewers allowed substantially improving the manuscript. We are grateful to Jason Cervenec (Byrd Polar and Climate Research Center) for English improvement when preparing the revised version. This study was supported by the Russian Foundation for Basic Research (Grant No. 14-05-00137). SEM and XRD equipment that was employed this work became available at the Department of Engineering and Ecological Geology of the Moscow State University through the Development Program of the Moscow State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav S. Kutuzov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kutuzov, S.S., Mikhalenko, V.N., Grachev, A.M. et al. First geophysical and shallow ice core investigation of the Kazbek plateau glacier, Caucasus Mountains. Environ Earth Sci 75, 1488 (2016). https://doi.org/10.1007/s12665-016-6295-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-6295-9

Keywords

Navigation