Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Glacial–interglacial changes in ocean surface conditions in the Southern Hemisphere

Abstract

The stable-isotope signatures of oxygen and hydrogen in the water of preserved ice and snow are both widely used to infer local temperatures of past environments. A derived quantity based on these two signatures, the ‘deuterium excess’1, provides additional palaeoclimatic information2,3,4, as this parameter depends on the meteorological and oceanic characteristics of the water's source-regions (in particular, their temperature2,3 and relative humidity4). Published studies mainly focus on records from the past 40,000 years. Here we present a deuterium-excess history obtained from ice cores from Vostok, East Antarctica, spanning the full glacial–interglacial cycle of the past 150,000 years. The deuterium-excess record shows a strong anticorrelation with the Earth's orbital obliquity (41,000-year periodicity), and values are markedly higher during the cold stage 5d (following the last interglacial) than during the other cold stages. We interpret the relationship with obliquity as resulting from changes in the latitudinal insolation gradient affecting ocean surface conditions and, thus, the delivery of moisture to the polar region. We argue that the high 5d values, relative to other cold stages, are driven by relatively less moisture delivered from high latitudes, and more from low latitudes. The deuterium-excess in Antarctic precipitation thus provides long-term, spatially integrated information on ocean surface conditions and ocean/atmosphere circulations in the Southern Hemisphere.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Time series of δD, deuterium excess, obliquity and insolation.
Figure 2: Deuterium excess versus δD (with smoothing over a 4,500-year running period).
Figure 3: Harmonic analysis of the deuterium excess (a) and δD (b) interpolated at 0.5-kyr intervals.

Similar content being viewed by others

References

  1. Dansgaard, W. Stable isotopes in precipitation. Tellus 16, 436–447 (1964).

    Article  ADS  Google Scholar 

  2. Dansgaard, W., White, J. W. & Johnsen, S. J. The abrupt termination of the Younger Dryas climate event. Nature 339, 532–534 (1989).

    Article  ADS  Google Scholar 

  3. Johnsen, S. J., Dansgaard, W. & White, J. W. C. The origin of Arctic precipitation under present and glacial conditions. Tellus B 41, 452–468 (1989).

    Article  ADS  Google Scholar 

  4. Jouzel, J., Merlivat, L. & Lorius, C. Deuterium excess in an East Antarctic ice core suggests higher relative humidity at the oceanic surface during the last glacial maximum. Nature 299, 688–691 (1982).

    Article  ADS  CAS  Google Scholar 

  5. Craig, H. Isotopic variations in meteoric waters. Science 133, 1702–1703 (1961).

    Article  ADS  CAS  Google Scholar 

  6. Merlivat, L. & Jouzel, J. Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation. J. Geophys. Res. 84, 5029–5033 (1979).

    Article  ADS  Google Scholar 

  7. Jouzel, J. & Merlivat, L. Deuterium and oxygen 18 in precipitation: modelling of the isotopic effects during snow formation. J. Geophys. Res. 89, 11749–11757 (1984).

    Article  ADS  CAS  Google Scholar 

  8. Petit, J. R., White, J. W. C., Young, N. W., Jouzel, J. & Korotkevich, Y. S. Deuterium excess in recent Antarctic snow. J. Geophys. Res. 96, 5113–5122 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Armengaud, A., Koster, R., Jouzel, J. & Ciais, P. Deuterium excess in Greenland snow: Analysis with simple and complex models. J. Geophys. Res. 103, 8947–8953 (1998).

    Article  ADS  Google Scholar 

  10. Jouzel, J. et al. Climatic interpretation of the recently extended Vostok ice records. Clim. Dyn. 12, 513–521 (1996).

    Article  Google Scholar 

  11. Jouzel, J. et al. Validity of the temperature reconstruction from ice cores. J. Geophys. Res. 102, 26471–26487 (1997).

    Article  ADS  CAS  Google Scholar 

  12. Thomson, D. J. Spectrum estimation and harmonic analysis. Proc. IEEE 70, 1055–1096 (1982).

    Article  ADS  Google Scholar 

  13. Jenkins, G. M. & Watts, D. G. Spectral Analysis and its Applications (Holden-Day, San Francisco, (1968).

    MATH  Google Scholar 

  14. Berger, A. L. Long-term variations of daily insolation and quaternary climatic change. J. Atmos. Sci. 35, 2362–2367 (1978).

    Article  ADS  Google Scholar 

  15. Satake, H. & Kawada, K. The quantitative evaluation of sublimation and the estimation of original hydrogen and oxygen isotope ratios of a firn core at East Queen Maud Land, Antarctica. Bull. Glacier Res. 15, 93–97 (1997).

    Google Scholar 

  16. Gallimore, R. G. & Kutzbach, J. E. Snow cover and sea ice sensitivity to generic changes in Earth orbital parameters. J. Geophys. Res. 100, 1103–1120 (1995).

    Article  ADS  Google Scholar 

  17. Delaygue, G., Masson, V., Jouzel, J., Koster, R. D. & Healy, R. J. The origin of Antarctic precipitation: a modelling approach. Tellus (submitted).

  18. Joussaume, S. & Taylor, K. E. in Proc. 1st AMIP Sci. Conf., WCRP Vol. 92 425–430 (World Climate Research Program, Monterey, CA, (1995).

    Google Scholar 

  19. Bard, E., Rostek, F. & Sonzogni, C. Interhemispheric synchrony of the last deglaciation inferred from alkenone palaeothermometry. Nature 385, 707–710 (1997).

    Article  ADS  CAS  Google Scholar 

  20. Schneider, R. R., Müller, P. J. & Ruhland, G. Late Quaternary surface circulation in the east equatorial South Atlantic: Evidence from alkenone sea surface temperatures. Paleoceanography 10, 197–219 (1995).

    Article  ADS  Google Scholar 

  21. Van Campo, E., Duplessy, J. C., Prell, W. L., Barratt, N. & Sabatier, R. Comparison of terrestrial and marine temperature estimate for the past 135 kyr off South East Africa: a test for GCM simulations of palaeoclimate. Nature 348, 209–212 (1990).

    Article  ADS  Google Scholar 

  22. Legrand, M. R., Lorius, C., Barkov, N. I. & Petrov, V. N. Vostok (Antarctica) ice core: atmospheric chemistry changes over the last climatic cycle (160000 years). Atmos. Environ. 22, 317–331 (1988).

    Article  ADS  CAS  Google Scholar 

  23. Genthon, C. Simulations of desert dust and sea-salt aerosols in Antarctica with a general circulation model of the atmosphere. Tellus B 44, 371–389 (1992).

    Article  ADS  Google Scholar 

  24. Petit, J. R. et al. Paleoclimatological and chronological implications of the Vostok core dust record. Nature 343, 56–58 (1990).

    Article  ADS  Google Scholar 

  25. Basile, I. et al. Patagonian origin of glacial dust deposited in East Antarctica (Vostok and Dome C) during glacial stages 2, 4 and 6. Earth Planet. Sci. Lett. 143, 573–590 (1997).

    Article  ADS  Google Scholar 

  26. Stocker, T. S. & Schmittner, A. Influence of CO2emission rates on the stability of the thermohaline circulation. Nature 388, 862–865 (1997).

    Article  ADS  CAS  Google Scholar 

  27. Blunier, T. et al. Asynchrony of Antarctica and Greenland climate during the last glacial. Nature 394, 739–743 (1998).

    Article  ADS  CAS  Google Scholar 

  28. Petit, J. R. et al. Four climate cycles in Vostok ice core. Nature 387, 359–360 (1997).

    Article  ADS  CAS  Google Scholar 

  29. Pichon, J. J. et al. Surface water temperature changes in the high latitudes of the southern hemisphere over the last glacial-interglacial cycle. Paleoceanography 7, 289–318 (1992).

    Article  ADS  Google Scholar 

  30. Paillard, D., Labeyrie, L. & Yiou, P. Macintosh program performs time-series analysis. Eos 77, 379 (1996).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Vostok is a joint project between Russia, France and USA. We thank all Russian, French and US participants in drilling, field work and ice sampling. We acknowledge the Russian Antarctic Expeditions (RAE), the Mining Institute, the Institut Français de Recherches et Technologies Polaires (IFRTP) and the Division of Polar Programs (NSF) for the logistic support. We thank D. Paillard and P. Yiou for their fruitful comments and S. Johnsen for his constructive criticism. This work project is supported by PNEDC (Programme National d'études de la Dynamique du Climat) and by the CEC (Commission of European Communities) Environment Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Vimeux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vimeux, F., Masson, V., Jouzel, J. et al. Glacial–interglacial changes in ocean surface conditions in the Southern Hemisphere. Nature 398, 410–413 (1999). https://doi.org/10.1038/18860

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/18860

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing