Skip to main content
Log in

Groundwater recharge by Sahelian rivers—consequences for agricultural development: example from the lower Komadugu Yobe River (Eastern Niger, Lake Chad Basin)

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

In the Sahel region, temporary rivers and ponds constitute green spaces of welfare where sustainable development requires parsimonious management of water resources. The Komadugu Yobe valley in Eastern Niger is presented here as an example case of recent agricultural development based on irrigated pepper cropping. Piezometric maps indicate there that the river recharges the upper Quaternary aquifer. A simplified numerical model allows to quantify the exchanges between the river and the aquifer, based mainly on exploration geophysics data and three piezometric records, covering between 1 and 3 years of our 4 years modeling period. Recharge at the valley axis is modeled with a linear river coefficient constant for each hydrological year. The main findings are that: (i) during dry years, the river is disconnected from the aquifer and separated from it by a layer of unsaturated medium, (ii) however, this effect can be reversed, such as during the 2010–2011 wet year or after the Sahelian drought event of the 1980s and 1990s, (iii) the infiltration rate from the river amounts to 30–40 % of its total discharge and to at least four times the abstraction for pepper irrigation along its 150 km lower course at the Niger–Nigeria boundary, which implies that neither the aquifer recharge nor the river discharge is at risk due to the present agricultural development. Similar modeling near temporary river axes could provide some help in water resource management in the Sahel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Babamaaji RA, Lee J (2014) Land use/land cover classification of the vicinity of Lake Chad using NigeriaSat-1 and Landsat data. Environ Earth Sci. doi:10.1007/s12665-013-2825-x

    Google Scholar 

  • Barbier BE (2003) Upstream dams and downstream water allocation; the case of the Hadejia-Jama’are floodplain, northern Nigeria. Wat Res Res. doi:10.1029/2003WR002249

    Google Scholar 

  • Bastola S, Delclaux F (2011) Temporal extension of meteorological records for simulation modeling of Lake Chad Basin (Africa) using satellite rainfall data and reanalysis datasets. Meteorol Appl. doi:10.1002/met.257

    Google Scholar 

  • Boronina A, Ramillien G (2008) Application of AVHRR imagery and GRACE measurements for calculation of actual evapotranspiration over the Quaternary aquifer (Lake Chad basin) and validation of groundwater models. J Hydrol 348:98–109

    Article  Google Scholar 

  • Boyer JF, Dieulin C, Rouché N, Cres A, Servat E, Paturel JE, Mahé G (2006) SIEREM an environmental information system for water resources. 5th World FRIEND Conference, La Havana–Cuba, November 2006. IAHS Publ 308:19–25

    Google Scholar 

  • Brenner AJ, Jarvis PG, Vandenbeldt RJ (1991) Transpiration from a neem windbreak in the Sahel. In: Sivakumar MV, Wallace JS, Renard C, Giroux C (eds) Soil water balance in the Soudano-Sahelian zone, vol 199. IAHS Publishers, UK, pp 375–386

    Google Scholar 

  • Canadell J, Jackson RB, Ehleringer JB, Mooney HA, Sala OE, Schulze ED (1996) Maximum rooting depth of vegetation types at the global scale. Oecologia 108:583–595

    Article  Google Scholar 

  • Candela J, Elorza FJ, Tamoh K, Jimenez-Martinez J, Aureli A (2013) Groundwater modelling with limited data sets: the Chari-Logone area (Lake Chad Basin, Chad). Hydrol Processes. doi:10.1002/hyp.9901

    Google Scholar 

  • Carter RC, Alkali AG (1996) Shallow groundwater in the northeast arid zone of Nigeria. Quat J Eng Geol 29:341–345

    Article  Google Scholar 

  • Cheo AE, Voigt H-J, Mbua RL (2013) Vulnerability of water resources in northern Cameroon in the context of climate change. Environ Earth Sci 70:1211–1217. doi:10.1007/s12665-012-2207-9

    Article  Google Scholar 

  • Chiang WH, Kinzelbach W (2005) 3D-groundwater modeling with Pmwin, a simulation system for modeling groundwater flow and transport processes. Springer, Berlin

    Google Scholar 

  • Delft J-O, Blumensaat F, Wang W, Krebs P, Kolditz O (2011) Coupling hydrogeological with surface runoff model in a Poltva case study in Western Ukraine. Environ Earth Sci 65:1439–1457. doi:10.1007/s12665-011-1285-4

    Google Scholar 

  • Descloitres M, Chalikakis K, Legchenko A, Moumouni A, Genthon P, Favreau G, Le Coz M, Boucher M, Oï M (2013) Groundwater resources estimation using MRS and electromagnetic surveys in the Komadugu Yobe valley Lac Chad area Niger. Afr J Earth Sci. doi:10.1016/j.jafrearsci.2013.07.006

    Google Scholar 

  • Doorenbos J, Kassam AH (1979) Réponse des rendements à l’eau. FAO Bul Irrig Drainage, 33, FAO, Rome, Italy, p 193

  • Druyan LM (2011) Review of studies of 21th-century precipitation trends over West Africa. Int J Climatol 31:1415–1424. doi:10.1002/joc.2180

    Article  Google Scholar 

  • Eberschweiler C (1993) Monitoring and management of groundwater resources in the Lake Chad Basin: mapping of aquifers water resource management—final report. R 35 985, CBLT—BRGM, Orleans, France

  • Edmunds WM (2009) Paleoclimate and groundwater evolution in Africa: implications for adaptation and management. Hydrol Sci J 54:781–792

    Article  Google Scholar 

  • Engelhart I, Raush R, Keim B, Al-Saud M, Shcuth C (2013) Surface and subsurface conceptual model of an arid environment with respect to mid- and late Holocene climate changes. Environ Earth Sci. doi:10.1007/s12665-013-2303-5

    Google Scholar 

  • Feng SY, Huo ZL, Kang SZ, Tang ZJ, Wang FX (2011) Groundwater simulation using a numerical model under different water resources management scenarios in an arid region of China. Environ Earth Sci. doi:10.1007/s12665-010-0581-8

    Google Scholar 

  • Fitterman DV, Stewart MT (1986) Transient electromagnetic sounding for groundwater. Geophysics 51:995–1005

    Article  Google Scholar 

  • Gaultier G (2004) Recharge et paléo-recharge d’une nappe aquifère libre en milieu sahélien (Niger Oriental). Approches géochimiques et hydrodynamiques. Thesis, Univ. PXI, Paris

  • Greigert J (1979) Atlas des eaux souterraines de la République du Niger. Etat des connaissances (Mai 1978), rapport 79 AGE 001: 218-284, BRGM, Orléans, France. Available for downloading at: http://infoterre.brgm.fr/rapports/79-AGE-001.pdf. Last accessed 2014/03/16

  • Guérin R, Descloitres M, Coudrain A, Talbi A, Gallaire R (2001) Geophysical surveys for identifying saline groundwater in the semi-arid region of the central Altiplano, Bolivia. Hydrol Process 15:3287–3301. doi:10.1002/hyp.284

    Article  Google Scholar 

  • Gumnior M, Preusser F (2007) Late Quaternary river development in the southwest Chad Basin : OSL dating of sediments from the Komadugu paleoflooplain (Northeast Nigeria). J Quat Sci 22:709–719. doi:10.1002/jsq.1091

    Article  Google Scholar 

  • Hargbauh AW, McDonald MG (1996a). User’s documentation for MODLFOW-96 an update to the US. Geological Survey finite difference groundwater flow model. Open-File report 96–485, US Geological Survey

  • Hargbauh AW, McDonald MG (1996b) Programmer’s documentation for MODFLOW-96 the US Geological Survey finite difference groundwater flow model, Open-File report 96–486, US Geological Survey

  • Hinderer J, Pfeffer J, Boucher M et al (2011) Land water storage from ground and space geodesy; firsts results from the GHYRAF (Gravity and Hydrology in Africa) experiment. Pure Appl Geophys. doi:10.1007/s00024-011-0417-9

    Google Scholar 

  • Hulme M (2001) Climatic perspectives on Sahelian dessiccation: 1973–1998. Glob Environ Change 11:19–29

    Article  Google Scholar 

  • IWACO (1985) Etude des ressources en eau du bassin de la Komadougou Yobe, commission nigero-nigerienne de coopération, Niamey

  • Khanzada AN, Morris JD, Ansari P, Slavich PG, Collopy JJ (1998) Groundwater uptake and sustainability of acacia and prosopis plantations in southern Parkistan. Agric Water Manag 36:121–139

    Article  Google Scholar 

  • Le Barbé L, Lebel T, Tabsoba D (2002) Rainfall variability in West Africa during the years 1950–90. J Climate 15:187–202

    Article  Google Scholar 

  • Le Coz M (2010) Modélisation hydrogéologique de dépôts hétérogénes: l’alluvium de la Komadougou Yobé (bassin du Lac Tchad, Sud Est Nigérien). PhD thesis, Univ. Montpellier II, France

  • Le Coz M, Genthon P, Adler PM (2011) Multiple-point statistics for modeling facies heterogeneities in a porous medium: the Komadugu-Yobe alluvium, Lake Chad Basin. Math Geosci 43:861–878

    Article  Google Scholar 

  • Le Coz M, Favreau G, Ousmane DS (2013) Modeling increased groundwater recharge due to change from rainfed to irrigated cropping in a semiarid region. Vadose Zone J. doi:10.2136/vzj2012.0138

    Google Scholar 

  • Lebel T, Ali A (2009) Recent trends in the Central and Western Sahel rainfall regime (1990–2007). J Hydrol 375:52–64

    Article  Google Scholar 

  • Leblanc M (2002) Use of GIS and remote sensing for water resources management of large semiarid regions. A case study of the Lake Chad Basin, Africa. PhD Thesis, University of Glamorgan (UK) and Poitiers University (Fr)

  • Leblanc JM, Favreau G, Maley J, Nazoumou Y, Leduc C, Stagnitti F, Van Oevelen PJ, Delclaux F, Lemoalle J (2006) Reconstruction of Megalake Chad using shuttle radar topographic mission data. Palaeogeogr Palaeoclimatol Palaeoecol 239:16–27

    Article  Google Scholar 

  • Leduc C, Salifou O, Leblanc M (1998) Evolution des resources en eau dans le département de Diffa, Bassin du Lac Tchad, Est Niger. In: Servat E, Hughes D, Fritsch JM, Hulme M (eds) Water Resource Variability in Africa during the XXth century, vol 252. IAHS Publishers, UK, pp 281–288

    Google Scholar 

  • Leduc C, Sabljak S, Taupin JD, Marlin C, Favreau G (2000) Estimation de la recharge de la nappe quaternaire dans le nord-ouest du bassin du lac Tchad (Niger oriental) à partir de mesures isotopiques. C R Acad Sci Paris II a 330:355–361

    Article  Google Scholar 

  • Leduc-PNUD (1991) Les ressources en eau du département de Diffa, Diffa, Direction de l’Hydraulique, Projet PNUD/DCTCD/NER/86/001

  • Legchenko A, Baltassat JM, Beauce A, Bernard J (2002) Nuclear magnetic resonance as a geophysical tool for hydrogeologists. J Appl Geophys. doi:10.1016/S0926-9851(02)00128-3

    Google Scholar 

  • Luxereau A, Genthon P, Ambouta Karimou JM (2011) Fluctuations in the size of Lake Chad: consequences on the livelihoods of the riverain peoples in eastern Niger. Reg Environ Changes. doi:10.1007/s10113-011-0267-0

    Google Scholar 

  • MacDonald AM, Bonsor HC, Dochartaigh BE, Taylor RG (2012) Quantitative maps of groundwater resources in Africa. Environ Res Lett. doi:10.1088/1748-9326/7/2/024009

    Google Scholar 

  • Mahé G, Paturel JE (2009) 1896–2006 sahelian rainfall variability and runoff increase of sahelian rivers. C R Geosciences 341:538–546

    Article  Google Scholar 

  • Martinson J (2010) Change in the course of the river Komadugu Yobe during the 20th century at the border between Niger and Nigeria. Master Thesis, Lund University, UK. Downloadable at http://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=1546003&fileOId=1546009. Last accessed 2014/05/16

  • Min LL, Yu JJ, Liu CM, Zhu JT, Wang P (2013) The spatial variability of streambed vertical hydraulic conductivity in an intermittent river, northwestern China. Environ Earth Sci. doi:10.1007/s12665-012-1973-8

    Google Scholar 

  • Mortimore M (2010) Adapting to drought in the Sahel: lessons for climate change. WIRES Climate Change 1:134–143

    Article  Google Scholar 

  • Mortimore MJ, Adams WM (2001) Farmer adaptation, change and ‘crisis’ in the Sahel. Glob Environ Change 11:49–57

    Article  Google Scholar 

  • Olivry JC, Chouret A, Vuillaume G, Lemoalle J, Bricquet JP (1996) Hydrologie du lac Tchad. IRD, Paris

    Google Scholar 

  • Roupsard O, Ferhi A, Granier F, Depommier D, Mallet B, Joly HI, Dreyer E (1999) Reverse phenology and dry-season water uptake by Faidherbia Albida (Del.) A. Chev. in an agroforestry parkland of Sudanese west Africa. Funct Ecol. doi:10.1046/j.1365-2435.1999.00345.x

    Google Scholar 

  • Rushton K (2007) Representation in regional models of saturated river-aquifer interaction for gaining/losing rivers. J Hydrol 334:262–281. doi:10.1016/j.jhdyrol.2006.10.008

    Article  Google Scholar 

  • Scanlon BR, Keese KE, Flint AL, Gaye CB, Edmunds M, Simmers I (2006) Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol Processes 20:3335–3370

    Article  Google Scholar 

  • Schneider JL, Wolff JP (1992) Carte géologique et cartes hydrogéologiques au 1/1 500 000 de la République du Tchad, mémoire explicatif, BRGM 209. BRGM, Orléans

    Google Scholar 

  • Shanafield M, Cook PG, Brunner P, McCallum J, Simmons CT (2012) Aquifer response to surface water transience in disconnected streams. Wat Res Res. doi:10.1029/2012WR012103

    Google Scholar 

  • Sophocleous M (2000) Interactions between groundwater and surface water: the state of the science. Hydrogeol J 10:52–67

    Article  Google Scholar 

  • Tarhule A, Woo MG (2002) Adaptation to the dynamics of rural water supply from natural sources: a village example in semi-arid Nigeria. Mit Adapt Stateg Glo Cha 7:215–237

    Article  Google Scholar 

  • Taylor RG, Koussis AD, Tindimugay C (2009) Groundwater and climate in Africa-a review. Hydrol Sci J 54:655–664

    Article  Google Scholar 

  • UNESCO-PNUD-CBLT (1972) Study of water resources in the Lake Chad Basin 1966–1970. TR/UNESCO/UNDP/REG 71. UNESCO, Paris

  • Zairi R (2008) Etude géochimique et hydrodynamique de la nappe libre du Bassin du Lac Tchad dans les régions de Diffa (Niger=oriental) et du Bornou (nord-est du Nigeria). PhD Thesis Univ. Montpellier II, France. Downloadable at http://www.hydrosciences.org/spip.php?article648. Last accessed 2014/05/13

Download references

Acknowledgments

The research presented in this paper has been funded by the Ghyraf ANR project, the REPAS CNRS/INSU EC2CO project and the IRD LAC TCHAD project. Nathalie Rouché is thanked for her help with the SIEREM database, François Delclaux for kindly providing the rainfall data, Gilbert Ferhat for his help with the leveling, Mathieu le Coz for sharing his experience on the permeability of the KY aquifer, and the whole IRD team in Niamey for logistic support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Genthon.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 325 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Genthon, P., Hector, B., Luxereau, A. et al. Groundwater recharge by Sahelian rivers—consequences for agricultural development: example from the lower Komadugu Yobe River (Eastern Niger, Lake Chad Basin). Environ Earth Sci 74, 1291–1302 (2015). https://doi.org/10.1007/s12665-015-4119-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-015-4119-y

Keywords

Navigation