Skip to main content

Advertisement

Log in

Key features of the IPSL ocean atmosphere model and its sensitivity to atmospheric resolution

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This paper presents the major characteristics of the Institut Pierre Simon Laplace (IPSL) coupled ocean–atmosphere general circulation model. The model components and the coupling methodology are described, as well as the main characteristics of the climatology and interannual variability. The model results of the standard version used for IPCC climate projections, and for intercomparison projects like the Paleoclimate Modeling Intercomparison Project (PMIP 2) are compared to those with a higher resolution in the atmosphere. A focus on the North Atlantic and on the tropics is used to address the impact of the atmosphere resolution on processes and feedbacks. In the North Atlantic, the resolution change leads to an improved representation of the storm-tracks and the North Atlantic oscillation. The better representation of the wind structure increases the northward salt transports, the deep-water formation and the Atlantic meridional overturning circulation. In the tropics, the ocean–atmosphere dynamical coupling, or Bjerknes feedback, improves with the resolution. The amplitude of ENSO (El Niño-Southern oscillation) consequently increases, as the damping processes are left unchanged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. Niño 3 is the 5°S–5°N/120°W–170°W region. Niño4 is the 5°S–5°N/160°E–150°W region.

References

  • Alkama R, Kageyama M, Ramstein G (2006) Freshwater discharges in a simulation of the Last Glacial Maximum climate using improved river routing. Geophys Res Let 33(21)

  • Andrich P (1988) OPA—a multitasked ocean general circulation model—reference manual. LODYC, Université Paris VI, France, p 60

    Google Scholar 

  • Ball JT, Woodrow TE, Berry JA (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. Prog Photosynth 4:221–224

    Google Scholar 

  • Barkstrom BR (1984) The Earth radiation budget experiment (ERBE). Bull Am Met Soc 65:1170–1185

    Article  Google Scholar 

  • Beckman A (1998) The representation of bottom boundary layer processes in numerical ocean circulation models. In: Chassignet EP, Verron J (eds) Ocean modeling and parametrization. Kluwer, Norwell

    Google Scholar 

  • Boning CW, Holland WR, Bryan FO, Danabasoglu G, Mcwilliams JC (1995) An overlooked problem in model simulations of the thermohaline circulation and heat-transport in the Atlantic-Ocean. J Clim 8(3):515–523

    Article  Google Scholar 

  • Bony S, Emanuel KA (2001) A parameterization of the cloudiness associated with cumulus convection; evaluation using TOGA COARE data. J Atmos Sci 58(21):3,158–3183

    Article  Google Scholar 

  • Bourke RH, McLaren AS (1992) Contour mapping of Arctic basin ice draft and roughness parameters. J Geophy Res-Oceans 97(C11):17715–17728

    Article  Google Scholar 

  • Braconnot P (1998) Tests de sensibilité avec le modèle d’atmosphère du LMD en vue d’améliorer le couplage avec l’océan, note technique IPSL 0076, IPSL, p 39

  • Braconnot P, Marti O (2003) Impact of precession on monsoon characteristics from coupled ocean atmosphere experiments: changes in Indian monsoon and Indian ocean climatology. Mar Geol 201(1–3):23–34

    Article  Google Scholar 

  • Braconnot P, Marti O, Joussaume S (1997) Adjustment and feedbacks in a global coupled ocean–atmosphere model. Clim Dyn 13(7–8):507–519

    Article  Google Scholar 

  • Braconnot P, Joussaume S, Marti O, de Noblet N (1999) Synergistic feedbacks from ocean and vegetation on the African monsoon response to mid-Holocene insolation. Geophys Res Lett 26(16):2481–2484

    Article  Google Scholar 

  • Braconnot P, Joussaume S, Marti O, de Noblet N (2000) Impact of ocean and vegetation feedback on 6 ka monsoon changes. Third PMIP Workshop, La Huardière, Canada, WCRP

  • Braconnot P, Hourdin F, Bony S, Dufresne J-L, Grandpeix J-Y, Marti O (2007a) Impact of different convective cloud schemes on the simulation of the tropical seasonal cycle in a coupled ocean–atmosphere model. Clim Dyn 29:501–520. doi:10.1007/s00382-007-0244-y

    Article  Google Scholar 

  • Braconnot P, Otto-Bliesner B, Harrison S, Joussaume S, Peterchmitt JY, Abe-Ouchi A, Crucifix M, Driesschaert E, Fichefet T, Hewitt CD, Kageyama M, Kitoh A, Laine A, Loutre MF, Marti O, Merkel U, Ramstein G, Valdes P, Weber SL, Yu Y, Zhao Y (2007b) Results of PMIP2 coupled simulations of the Mid-Holocene and last glacial maximum. Part 1. Experiments and large-scale features. Clim Past 3(2):261–277

    Google Scholar 

  • Bryden HL, Imawaki S (2001) Ocean heat transport. In: Siedler G, Church JA, Gould J (eds) Ocean circulation and climate: observing and modelling the global ocean. Academic Press, San Diego, pp 445–474

    Google Scholar 

  • Collatz GJ, Ribas-Carbo M, Berry JA (1992) Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Aust J Plant Physiol 19(5):519–538

    Article  Google Scholar 

  • Cunningham SA, Alderson SG, King BA, Brandon MA (2003) Transport and variability of the Antarctic circumpolar current in drake passage. J Geophys Res-Oceans 108(C5). doi:10.1029/2001JC001147

  • de Boyer Montégut CD, Madec G, Fischer AS, Lazar A, Iudicone D (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res-Oceans 109(C12). doi:10.1029/2004JC002378

  • DeWeaver E, Bitz CM (2006) Atmospheric circulation and its effect on Arctic sea ice in CCSM3 simulations at medium and high resolution. J Clim 19(11):2415–2436

    Article  Google Scholar 

  • Dong BW, Valdes PJ (2000) Climates at the last glacial maximum: Influence of model horizontal resolution. J Clim 13(9):1554–1573

    Article  Google Scholar 

  • Ducoudré N, Laval K, Perrier A (1993) SECHIBA, a new set of parameterizations of the hydrologic exchanges at the land–atmosphere interface within the LMD atmospheric general circulation model. J Clim 6:248–273

    Article  Google Scholar 

  • Dufresne J-L, Grandpeix J-Y (1996), Raccordement des modèles thermodynamiques de glace, d’océan et d’atmosphère, Note Interne 205, Laboratoire de Métérologie Dynamique

  • Dufresne JL, Friedlingstein P, Berthelot M, Bopp L, Ciais P, Fairhead L, Le Treut H, Monfray P (2002) On the magnitude of positive feedback between future climate change and the carbon cycle. Geophys Res Lett 29(10). doi:10.1029/2001GL013777

  • Dufresne JL, Quaas J, Boucher O, Denvil S, Fairhead L (2005) Contrasts in the effects on climate of anthropogenic sulfate aerosols between the 20th and the 21st century. Geophys Res Lett 32(21). doi:10.1029/2005GL023619

  • Eichelberger SJ, Hartmann DL (2007) Zonal jet structure and the leading mode of variability. J Clim 20(20):5149–5163

    Article  Google Scholar 

  • Emanuel KA (1991) The theory of Hurricanes. Ann Rev Fluid Mech 23:179–196

    Article  Google Scholar 

  • Farquhar GD, Caemmerer SV, Berry JA (1980) A biochemical-model of photosynthetic CO2 assimilation in leaves of C-3 species. Planta 149(1):78–90

    Article  Google Scholar 

  • Fedorov AV (2007) Net energy dissipation rates in the tropical ocean and ENSO dynamics. J Clim 20(6):1108–1117

    Article  Google Scholar 

  • Fichefet T, Morales-Maqueda AM (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res 102(6):12609–12646

    Article  Google Scholar 

  • Fichefet T, Morales-Maqueda AM (1999) Modelling the influence of snow accumulation and snow–ice formation on the seasonal cycle of the Antarctic sea–ice cover. Clim Dyn 15(4):251–268

    Article  Google Scholar 

  • Filiberti M-A, Dufresne J-L, Grandpeix J-Y (2001) Reference manual for IGLOO sea ice model. Note technique du Pôle de modélisation, Institut Pierre-Simon Laplace, 35 pp

  • Fouquart Y, Bonnel B (1980) Computations of solar heating of the Earth’s atmosphere: a new parametrization. Contrib Atmos Phys 53:35–62

    Google Scholar 

  • Friedlingstein P, Bopp L, Ciais P, Dufresne JL, Fairhead L, LeTreut H, Monfray P, Orr J (2001) Positive feedback between future climate change and the carbon cycle. Geophys Res Lett 28(8):1543–1546

    Article  Google Scholar 

  • Ganachaud A, Wunsch C (2000) Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 408(23 November):453–457

    Article  Google Scholar 

  • Ganachaud A, Wunsch C (2003) Large-scale ocean heat and freshwater transport during the World ocean circulation experiment. J Clim 16:696–705

    Article  Google Scholar 

  • Gloersen P, Campbell WJ (1991) Recent variations in Arctic and Antarctic sea–ice covers. Nature 352:33–36

    Article  Google Scholar 

  • Guilyardi E (2006) El Niño-mean state-seasonal cycle interactions in a multi-model ensemble. Clim Dyn 26(4):329–348

    Article  Google Scholar 

  • Guilyardi E, Madec G, Terray L (2001) The role of lateral ocean physics in the upper ocean thermal balance of a coupled ocean–atmosphere GCM. Clim Dyn 17(8):589–599

    Article  Google Scholar 

  • Guilyardi E, Gualdi S, Slingo JM, Navarra A, Delecluse P, Cole J, Madec G, Roberts M, Latif M, Terray L (2004) Representing El Niño in coupled ocean–atmosphere GCMs: the dominant role of the atmospheric component. J Clim 17(24):4623–4629

    Article  Google Scholar 

  • Hack JJ, Caron JM, Danabasoglu G, Oleson KW, Bitz C, Truesdale JE (2006a) CCSM-CAM3 climate simulation sensitivity to changes in horizontal resolution. J Clim 19(11):2267–2289

    Article  Google Scholar 

  • Hack JJ, Caron JM, Yeager SG, Oleson KW, Holland MM, Truesdale JE, Rasch PJ (2006b) Simulation of the global hydrological cycle in the CCSM community atmosphere model version 3 (CAM3): mean features. J Clim 19(11):2199–2221

    Article  Google Scholar 

  • Hagemann S, Dumenil L (1998) A parametrization of the lateral waterflow for the global scale. Clim Dyn 14(1):17–31

    Article  Google Scholar 

  • Hibler WDI (1979) A dynamic thermodynamic sea ice model. J Phys Oceanogr 9:815–846

    Article  Google Scholar 

  • Hoskins BJ, Hodges KI (2002) New perspectives on the Northern Hemisphere winter storm tracks. J Atmos Sci 59(6):1041–1061

    Article  Google Scholar 

  • Hourdin F, Issartel JP, Cabrit B, Idelkadi A (1999) Reciprocity of atmospheric transport of trace species. Comptes Rendus de L’Académie des Sciences, Serie II, Fascicule a, Sciences de la Terre et des Planètes 329(9):623–628

    Google Scholar 

  • Hourdin F, Musat I, Bony S, Braconnot P, Codron F, Dufresne JL, Fairhead L, Filiberti MA, Friedlingstein P, Grandpeix JY, Krinner G, Levan P, Li ZX, Lott F (2006) The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim Dyn 27(7–8):787–813

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007—the physical science basis, contribution of working group I to the fourth assessment report of the IPCC. IPCC, Geneva, 981 pp

  • Jakobsson M, Cherkis NZ, Woodward J, Macnab R, Coakley B (2000) New grid of Arctic bathymetry aids scientists and mapmakers. EOS Trans 81(9):89, 93, 96

    Google Scholar 

  • Jones PW (1999) First- and second-order conservative remapping schemes for grid in spherical coordinates. Mont Weath Rev 127(9):2204–2210

    Article  Google Scholar 

  • Kageyama M, Valdes PJ, Ramstein G, Hewitt C, Wyputta U (1999) Northern hemisphere storm tracks in present day and last glacial maximum climate simulations: a comparison of the European PMIP models. J Clim 12(3):742–760

    Article  Google Scholar 

  • Kageyama M, Peyron O, Pinot S, Tarasov P, Guiot J, Joussaume S, Ramstein G (2001) The last glacial maximum climate over Europe and western Siberia: a PMIP comparison between models and data. Clim Dyn 17(1):23–43

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Met Soc 77(3):437–471

    Article  Google Scholar 

  • Khodri M, Cane MA, Kukla G, Gavin J, Braconnot P (2005) The impact of precession changes on the Arctic climate during the last interglacial–glacial transition. Earth Planet Sci Lett 236(1–2):285–304

    Article  Google Scholar 

  • Krinner G, Genthon C, Li Z-X, Le Van P (1997) Studies of the Antarctic climate with a stretched-grid general circulation model. J Geophys Res 102:13731–13745

    Article  Google Scholar 

  • Krinner G, Viovy N, de Noblet-Ducoudré N, Ogée J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice IC (2005) A dynamic global vegetation model for studies of the coupled atmosphere–biosphere system. Glob Biogeochem Cycle 19(1). doi:10.1029/2003GB002199

  • L’Heveder B (1999) Variabilité saisonnière et interannuelle des glaces de mer en Arctique: influence des interactions avec l’atmosphère. Ph.D., Paris VI, pp 132

  • Le Clainche Y (1996) Modélisation du ruissellement dans un modèle couplé, Tech. rep., LSCE, Saclay

  • Le Treut H, Li Z-X (1991) Sensitivity of an atmospheric general circulation model to prescribed SST changes: feedback effect associated with the simulation of the cloud optical properties. Clim Dyn 5:175–187

    Google Scholar 

  • Levitus S (1982) Climatological atlas of the world ocean, 13. NOAA/ERL GFDL, Washington, p 173

    Google Scholar 

  • Lott F (1997) The transient emission of propagating gravity waves by a stably stratified shear layer. Quart J Roy Met Soc 123(542):1603–1619

    Article  Google Scholar 

  • Lott F (1999) Alleviation of stationary biases in a GCM through a mountain drag parameterization scheme and a simple representation of mountain lift forces. Mont Weath Rev 127(5):788–801

    Article  Google Scholar 

  • Lythe MB, Vaughan DG (2001) BEDMAP: a new ice thickness and subglacial topographic model of Antarctica. J Geophys Res–Solid Earth 106:11335–11351

    Article  Google Scholar 

  • MacDonald A (1998) The global ocean: a hydrographic estimate and regional analysis. Prog Oceanogr 41:281–382

    Article  Google Scholar 

  • Madec G, Imbard M (1996) A global ocean mesh to overcome the North Pole singularity. Clim Dyn 12(6):381–388

    Article  Google Scholar 

  • Madec G, Delecluse P, Imbard M, Levy C (1997) OPA version 8.1 Ocean general circulation model reference manual, 3. LODYC, Technical Report, 91 pp

  • Marti O, Braconnot P, Bellier J, Benshila R, Bony S, Brockmann P, Cadule P, Caubel A, Denvil S, Dufresne JL, Fairhead L, Filiberti M-A, Foujols M-A, Fichefet T, Friedlingstein P, Goosse H, Grandpeix JY, Hourdin F, Krinner G, Lévy C, Madec G, Musat I, de Noblet N, Polcher J, Talandier C (2005) The new IPSL climate system model: IPSL-CM4, Note du Pôle de Modélisation 26. Institut Pierre Simon Laplace, Paris, p 84

    Google Scholar 

  • Meehl GA, Covey C, Delworth TL, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Met Soc 88(9):1383–1394. doi:10.1175/BAMS-88-9-1383

    Article  Google Scholar 

  • Morcrette JJ, Smith L, Fouquart Y (1986) Pressure and temperature dependence of the absorption in longwave radiation parametrizations. Contrib Atmos Phys 59(4):455–469

    Google Scholar 

  • Murray RJ (1996) Explicit generation of orthogonal grids for ocean models. J Comput Phys 126:251–273

    Article  Google Scholar 

  • Navarra A, Gualdi S, Masina S, Behera S, Luo JJ, Masson S, Guilyardi E, Delecluse P, Yamagata T (2008) Atmospheric horizontal resolution affects tropical climate variability in coupled models. J Clim 21(4):730–750

    Article  Google Scholar 

  • Ngo-Duc T, Polcher J, Laval K (2005) A 53-year forcing data set for land surface models. J Geophys Res (Atm) 110(D6). doi:10.1029/2004JD005434

  • Philip S, Van Oldenborgh GJ (2006) Shifts in ENSO coupling processes under global warming. Geophys Res Let 33(11). doi:10.1029/2006GL026196

  • Pinot S, Ramstein G, Harrison SP, Prentice IC, Guiot J, Stute M, Joussaume S (1999) Tropical paleoclimates at the last glacial maximum: comparison of paleoclimate modeling intercomparison project (PMIP) simulations and paleodata. Clim Dyn 15(11):857–874

    Article  Google Scholar 

  • Polcher J, McAvaney B, Viterbo P, Gaertner MA, Hahmann A, Mahfouf JF, Noilhan J, Phillips T, Pitman A, Schlosser CA, Schulz JP, Timbal B, Verseghy D, Xue Y (1998) A proposal for a general interface between land surface schemes and general circulation models. Glob Planet Change 19(1–4):261–276

    Article  Google Scholar 

  • Quadrelli R, Wallace JM (2004) A simplified linear framework for interpreting patterns of Northern Hemisphere wintertime climate variability. J Clim 17(19):3728–3744

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC,Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res-Atmospheres 108(D14). doi:10.1029/2002JD002670

  • Reynolds RW (1988) A real time global sea-surface temperature analysis. J Clim 1:75–86

    Article  Google Scholar 

  • Roullet G, Madec G (2000) Salt conservation, free surface, and varying levels: a new formulation for ocean general circulation models. J Geophys Res (Oceans) 105(10):23927–23942

    Article  Google Scholar 

  • Russell J, Stouffer RJ, Dixon KW (2006) Intercomparison of the Southern Ocean circulations in IPCC coupled control simulations. J Clim 19:4560–4575

    Article  Google Scholar 

  • Sadourny R, Laval K (1984) January and July performance of the LMD general circulation model. New perspectives in climate modelling, developments in atmospheric science. In: Berger AL, Nicolis C (eds). 16:173–198

  • Smith WHF, Sandwell DT (1997) Global sea-floor topography from satellite altimetry and ship depth souding. Science 277:1952–1956

    Article  Google Scholar 

  • Steele M, Morley R, Ermold W (2001) PHC: a global ocean hydrography with a high-quality Arctic Ocean. J Clim 14(9):2079–2087

    Article  Google Scholar 

  • Stommel H (1961) Thermohaline convection with 2 stable regimes of flow. Tellus 13(2):224–230

    Article  Google Scholar 

  • Sun DZ, Zhang T, Covey C, Klein SA, Collins WD, Hack JJ, Kiehl JT, Meehl GA, Held IM, Suarez M (2006) Radiative and dynamical feedbacks over the equatorial cold tongue: results from nine atmospheric GCMs. J Clim 19(16):4059–4074

    Article  Google Scholar 

  • Swingedouw D, Braconnot P, Marti O (2006) Sensitivity of the Atlantic meridional overturning circulation to the melting from northern glaciers in climate change experiments. Geophys Res Lett 33(7). doi:10.1029/2006GL025765

  • Swingedouw D, Braconnot P, Delecluse P, Guilyardi E, Marti O (2007) The impact of global freshwater forcing on the thermohaline circulation: adjustment of North Atlantic convection sites in a CGCM. Clim Dyn 28(2–3):291–305

    Google Scholar 

  • Talley LD, Reid JL, Robbins PE (2003) Data-based meridional overturning streamfunctions for the global ocean. J Clim 16(19):3213–3226

    Article  Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res-Atmospheres 106(D7):7183–7192

    Article  Google Scholar 

  • Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mont Weath Rev 117:1179–1800

    Google Scholar 

  • Timmermann R, Goosse H, Madec G, Fichefet T, Ethé C, Dulière V (2004) On the representation of high latitude processes in the ORCA-LIM global coupled sea ice–ocean model. Ocean Mod 8(1–2):175–201

    Google Scholar 

  • Trenberth KE, Caron JM (2001) Estimates of meridional atmosphere and ocean heat transports. J Clim 14(16):3433–3443

    Article  Google Scholar 

  • Uppala SM, Kallberg PW, Simmons AJ, Andrae U, Bechtold VD, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Van De Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Holm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP, Mahfouf JF, Morcrette JJ, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Quart J Roy Met Soc 131(612):2961–3012

    Article  Google Scholar 

  • Valcke S (2006), OASIS3 user guide (prism_2-5), PRISM support initiative 3, 68 pp

  • Van Leer B (1977) Towards the ultimate conservative difference scheme: IV a new approach to numerical convection. J Comput Phys 23:276–299

    Article  Google Scholar 

  • Verant S, Laval K, Polcher J, De Castro M (2004) Sensitivity of the continental hydrological cycle to the spatial resolution over the Iberian Peninsula. J Hydrometeorol 5(2):267–285

    Article  Google Scholar 

  • Wijffels SE, Schmitt RW, Bryden HL, Stigebrandt A (1992) Transport of fresh-water by the Oceans. J Phys Oceanogr 22(2):155–162

    Article  Google Scholar 

  • Wunsch C (2005) The total meridional heat flux and its oceanic and atmospheric partition. J Clim 18(21):4374–4380

    Article  Google Scholar 

  • Xie PP, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Met Soc 78(11):2539–2558

    Article  Google Scholar 

Download references

Acknowledgments

We thank all the people at Institut Pierre Simon Laplace, Institut d’Astronomie Georges Lemaître and Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique who participate to the development of the model components, the assembling of the climate model, and the development of compilation, running and post-processing environments. Computer time was provided by Centre National de la Recherche Scientifique and Commissariat à l’Energie Atomique. This work is a contribution to the European project ENSEMBLES (Project no. GOCE-CT-2003-505539) and to the French project MissTerre (LEFE-EVE). The authors wish to acknowledge use of the Ferret program for analysis and graphics in this paper. Ferret is a product of NOAA’s Pacific Marine Environmental Laboratory (information is available at http://ferret.pmel.noaa.gov/Ferret).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Marti.

Appendix 1: Interface for coupling the turbulent fluxes

Appendix 1: Interface for coupling the turbulent fluxes

A first standard interface for the coupling between the surface and the atmosphere was proposed by the PILPS project (Polcher et al. 1998, 2005). A drawback of the proposed approach is that the separation between the solving of the turbulent fluxes in the boundary layer and the solving of the temperature by the surface model is not complete. Indeed, the time evolution of the first atmospheric level variables (Polcher et al. 1998) is a function of the surface flux, but also of some surface coefficients. We overcome this difficulty by rewriting the discretized form of the vertical diffusion equation of the first atmospheric level and by considering explicitly the flux \( F_{X,1 /2}^{t + \delta t} \)between layer 1 and the surface:

$$ \begin{gathered} {\frac{{X_{1}^{t} - X_{1}^{t + \delta t} }}{\delta t}} = \hfill \\ {\frac{1}{{\delta z_{1} }}}\left( {K_{{X,{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}}} {\frac{{X_{2}^{t + \delta t} - X_{1}^{t - \delta t} }}{{\delta z_{{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}}} }}} - F_{{X,{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}}}^{t + \delta t} } \right) \hfill \\ \end{gathered} $$
(1)

and

$$ F_{{X,{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}}}^{t + \delta t} = K_{{X,{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}}} {\frac{{X_{1}^{t + \delta t} - X_{0}^{t + \delta t} }}{{\delta z_{1/2} }}} $$
(2)

Variables X stands for the dry static energy, the specific humidity or the wind speed, F X,k−1/2 is the flux of X at interface k − 1/2 (between level k and k − 1), K X,k−1/2 is the vertical diffusion coefficient for variable X at this level; δz k is the thickness of layer k and δz k+1 is the distance between the centres of layers k and k − 1.

1.1 1.1 In the boundary layer

To solve the vertical diffusion equation in the boundary layer, each variable of level k is written as a function of the variable of the level below k − 1, for all levels except level 1:

$$ X_{k}^{t + \delta t} = A_{X,k} X_{X,k - 1}^{t + \delta t} + B_{X,k} {\text{ for }}k \ge 2 $$
(3)

For level 1, \( X_{2}^{t + \delta t} \) may be suppressed from Eq. 1, using:

$$ A_{X,1} = - {\frac{\delta t}{{\delta z_{1} C_{X,1} }}} $$
(4)

and

$$ X_{1}^{t + \delta t} = A_{X,1} F_{X,1/2}^{t + \delta t} + B_{X,1} $$
(5)
$$ A_{X,1} = - {\frac{\delta t}{{\delta z_{1} C_{X,1} }}} $$
(6)
$$ B_{X,1} = \left( {X_{1}^{t} + {\frac{{\delta tK_{{X,{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}}} }}{{\delta z_{1} \delta z_{{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}}} }}}} \right){\frac{1}{{C_{X,1} }}} $$
(7)

and

$$ C_{X,1} = 1 + {\frac{{\delta tK_{{X,{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}}} }}{{\delta z_{1} \delta z_{{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}}} }}}\left( {1 - A_{X,2} } \right) $$
(8)

One may verify that Eqs. 58 make only use of the flux with surface \( F_{X,1/2}^{t + \delta t} \) and of atmospheric variables above layer 1. There is no use of surface variable or surface coefficient. For each variable X, variables X X,1, A X,1 and B X,1 are transmitted by the boundary layer model to the surface model.

1.1.1 1.1.1 In the surface model

The surface model has to compute the surface flux \( F_{X,1/2}^{t + \delta t} \) for each variable X. For the temperature and the humidity at the surface, the new values \( X_{1}^{t + \delta t} \) are computed (if required) through the energy and water budget of the surface. The coupling between atmosphere and surface being implicit, a relationship between \( F_{X,1/2}^{t + \delta t} \) and \( X_{0}^{t + \delta t} \) is required. This is obtained by combining Eqs. 25:

$$ F_{{X,{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}}}^{t + \delta t} = {\frac{{K_{{X,{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}}} }}{{\delta z_{1/2} - K_{{X,{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}}} A_{X,1} }}}\left( {B_{X,1} - X_{0}^{t + \delta t} } \right) $$
(9)

1.2 1.2 Decomposition of the oceanic heat transport

The oceanic heat transport across a latitude λ due to advection is computed as:

$$ F = \int\limits_{z = 0}^{\text{bottom}} {\int\limits_{{}}^{{}} {\rho C_{\text{p}} Tvr_{\text{a}} { \cos }(\lambda )d\varphi dz} } $$
(10)

c mass, C p the heat capacity per mass unit, T the temperature, v the northward velocity, r a the Earth radius, φ the longitude and z the depth. T and z the depth. T, a and v are separated in \( T = \overline{T} + T^\prime \) and \( v = \overline{v} + v^\prime \), where the overline denotes the latitudinal average, and prime the latitudinal anomaly. The transport can be decomposed (2001) as:

$$ \begin{gathered} F = \iint {\rho C_{\text{p}} }\overline{T} \overline{v} r_{\text{a}} \,{ \cos }\left( \lambda \right)d\varphi dz \hfill \\ \,\,\,\,\,\,\, + \iint {\rho C_{\text{p}} }T^{\prime}v^{\prime}r_{\text{a}} \,{ \cos }\left( \lambda \right)d\varphi dz \hfill \\ \end{gathered} $$
(11)

The first term is the overturning transport and the second one the gyre transport.

1.3 1.3 Time filtering of snow accumulation on land ice

On land–ice surface, the local snow mass is limited to 3,000 kg m−2. At each time-step, the snow mass over this limit C(t) is computed. The calving C * send to ocean is computed as a filtered snow mass C(t) = (∆t/τ)C(t+ (1 − ∆t/τ).C × (t − 1), where ∆t is the model time-step and τ is a characteristic time, set to 10 years in all experiments.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marti, O., Braconnot, P., Dufresne, JL. et al. Key features of the IPSL ocean atmosphere model and its sensitivity to atmospheric resolution. Clim Dyn 34, 1–26 (2010). https://doi.org/10.1007/s00382-009-0640-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-009-0640-6

Keywords

Navigation