Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-25T05:31:33.129Z Has data issue: false hasContentIssue false

New pollen evidence from Nariani (Georgia) for delayed postglacial forest expansion in the South Caucasus

Published online by Cambridge University Press:  06 February 2017

Erwan Messager*
Affiliation:
CNRS UMR 5204 EDYTEM, Campus Technolac Savoie Mont Blanc University, 73376 Le Bourget-du-Lac, France
Sébastien Nomade
Affiliation:
LSCE/IPSL, Laboratoire CEA-CNRS-UVSQ et Université de Paris-Saclay Domaine du CNRS, Bât. 12, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
Bruno Wilhelm
Affiliation:
University Grenoble Alpes, LTHE, 38000 Grenoble, France
Sébastien Joannin
Affiliation:
ISEM, UMR 5554 CNRS, Université de Montpellier, EPHE, IRD 226, CIRAD, 34095 Montpellier, France
Vincent Scao
Affiliation:
LSCE/IPSL, Laboratoire CEA-CNRS-UVSQ et Université de Paris-Saclay Domaine du CNRS, Bât. 12, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
Ulrich Von Grafenstein
Affiliation:
LSCE/IPSL, Laboratoire CEA-CNRS-UVSQ et Université de Paris-Saclay Domaine du CNRS, Bât. 12, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
Inga Martkoplishvili
Affiliation:
Ilia State University, 3/5 Cholokashvili St., 0162 Tbilisi, Georgia Georgian National Museum, 3, Rustaveli Avenue, 0105 Tbilisi, Georgia
Vincent Ollivier
Affiliation:
Aix Marseille Université, CNRS, MCC, LAMPEA UMR 7269, 13094 Aix-en-Provence, France
Ana Mgeladze
Affiliation:
Georgian National Museum, 3, Rustaveli Avenue, 0105 Tbilisi, Georgia
Jean-Pascal Dumoulin
Affiliation:
UMS 2572, Laboratoire de Mesure du Carbone 14, CEA Saclay, 91191 Gif-sur-Yvette, France
Arnaud Mazuy
Affiliation:
UMR 7264, CEPAM-CNRS Nice Université, Campus SJA3, 06357 Nice Cedex 4, France
Soumaya Belmecheri
Affiliation:
Laboratory of Tree-Ring Research, 1215 East Lowell Street, Tucson, AZ 85721, United States
David Lordkipanidze
Affiliation:
Georgian National Museum, 3, Rustaveli Avenue, 0105 Tbilisi, Georgia
*
*Corresponding author at: CNRS UMR 5204 EDYTEM, Campus Technolac Savoie Mont Blanc University, 73376 Le Bourget du Lac, France. E-mail address: erwan.messager@univ-smb.fr

Abstract

The nature and timing of environmental changes throughout the last glacial-interglacial transition in the South Caucasus, and more widely in eastern Europe, are still not fully understood. According to certain pollen records, forest expansion occurred in many areas several millennia after what is considered worldwide as the onset of the Holocene. The current problem we face is that the time lag in forest expansion varies from one sequence to another, sometimes with no delay at all. Moreover, the potential forcing/controlling factors behind this complex pattern, contrary to the almost synchronous global Holocene warming, are still a matter for debate. Accordingly, we revisit the issue of forest expansion through vegetation history obtained in the South Caucasus using a new pollen record, retrieved from the Nariani paleolake (South Georgia). These data attest to a steppic phase, initially dominated by Amaranthaceae-Chenopodiaceae (12,700–10,500 cal yr BP), then by Poaceae (10,500–9000 cal yr BP), culminating with a more forested phase (9000–5000 calyrBP). Although some palaeoclimatic regional reconstructions show a wet early Holocene, we interpret the delay in forest expansion recorded in Nariani (2500 years) as the result of reduced spring precipitation, which would have limited forest development at that time.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arabuli, G., Kvavadze, El., Kikodze, D., Connor, S.E., Kvavadze, Er., Bagaturia, N., Murvanisze, M., Arabuli, T., 2008. The Krummholz beech woods of Mt. Tavkvetili (Javakheti Plateau, Southern Georgia) – a relict ecosystem. Proceedings of the Institute of Zoology 23, 194213.Google Scholar
Arpe, K., Leroy, S.A.G., Mikolajewicz, U., 2011. A comparison of climate simulations for the last glacial maximum with three different versions of the ECHAM model and implications for summer-green tree refugia. Climate of the Past 7, 91114.Google Scholar
Arz, H.W., Lamy, F., Patzold, J., Muller, P.J., Prins, M., 2003. Mediterranean moisture source for an early-Holocene humid period in the northern Red Sea. Science 300, 118121.CrossRefGoogle ScholarPubMed
Atanassova, J., 2005. Palaeoecological setting of the western Black Sea area during the last 15000 years. Holocene 15, 576584.CrossRefGoogle Scholar
Badertscher, S., Fleitmann, D., Cheng, H., Edwards, R.L., Göktürk, O.M., Zumbühl, A., Leuenberger, M., Tüysüz, O., 2011. Pleistocene water intrusions from the Mediterranean and Caspian seas into the Black Sea. Nature Geoscience 4, 236239.CrossRefGoogle Scholar
Bahr, A., Arz, H.W., Lamy, F., Wefer, G., 2006. Late glacial to Holocene paleoenvironmental evolution of the Black Sea, reconstructed with stable oxygen isotope records obtained on ostracod shells. Earth and Planetary Science Letters 241, 863875.CrossRefGoogle Scholar
Bar-Matthews, M., Ayalon, A., Kaufman, A., Wasserburg, G.J., 1999. The Eastern Mediterranean paleoclimate as a reflection of regional events: Soreq cave, Israel. Earth and Planetary Science Letters 166, 8595.Google Scholar
Beug, H.-J., 2004. Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Pfeil, Munich.Google Scholar
Birks, H.J.B., Birks, H.H., 1980. Quaternary Palaeoecology, Edward Arnold, London.Google Scholar
Blaauw, M., 2010. Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quaternary Geochronology 5, 512518.Google Scholar
Bohn, U., Gollub, G., Hettwer, C., 2000. Karte der natürlichen Vegetation Europas. Bundesamt für Naturschutz, Bonn, Germany.Google Scholar
Bottema, S., 1986. A late Quaternary pollen diagram from Lake Urmia (northwestern Iran). Review of Palaeobotany and Palynology 47, 241261.CrossRefGoogle Scholar
Bottema, S., 1995. The Younger Dryas in the Eastern Mediterranean. Quaternary Science Reviews 14, 883891.Google Scholar
Brayshaw, D.J., Rambeau, C.M.C., Smith, S.J., 2011. Changes in Mediterranean climate during the Holocene: insights from global and regional climate modelling. Holocene 21, 1531.Google Scholar
Connor, S.E., 2011. A Promethean Legacy: Late Quaternary Vegetation History of Southern Georgia, the Caucasus. Peeters, Leuven, Belgium.Google Scholar
Connor, S.E., Kvavadze, E.V., 2008. Modelling late Quaternary changes in plant distribution, vegetation and climate using pollen data from Georgia, Caucasus. Journal of Biogeography 36, 529545.Google Scholar
Connor, S.E., Ross, S.A., Sobotkova, A., Herries, A.I.R., Mooney, S.D., Longford, C., Iliev, I., 2013. Environmental conditions in the SE Balkans sine the Last Glacial Maximum and their influence on the spread of agriculture into Europe. Quaternary Science Reviews 68, 200215.Google Scholar
Connor, S.E., Sagona, A., 2007. Environment and society in the late prehistory of Southern Georgia, Caucasus. In: Lyonnet, B. (Ed.), Les cultures du Caucase (VIe-IIIe millénaires avant notre ère): Leurs relations avec le Proche-Orient. Editions Recherche sur les Civilisations. CNRS Editions, Paris, pp. 2136.Google Scholar
Connor, S.E., Thomas, I., Kvavadze, E., Arabuli, G.J., Avakov, G., Sagona, A., 2004. A survey modern pollen and vegetation along an altitudinal transect in southern Georgia, Caucasus region. Review of Palaeobotany and Palynology 129, 229250.CrossRefGoogle Scholar
Dean, J.R., Jones, M.D., Leng, M.J., Noble, S.R., Metcalfe, S.E., Sloane, H.J., Sahy, D., Eastwood, W.J., Roberts, C.N., 2015. Eastern Mediterranean hydroclimate over the late glacial and Holocene, reconstructed from the sediments of Nar lake, central Turkey, using stable isotopes and carbonate mineralogy. Quaternary Science Reviews 124, 162174.Google Scholar
de Klerk, P., Haberl, A., Kaffke, A., Krebs, M., Matchutadze, I., Minke, M., Schulz, J., Joosten, H., 2009. Vegetation history and environmental development since ca 6000 cal yr BP in and around Ispani 2 (Kolkheti lowlands, Georgia). Quaternary Science Reviews 28, 890910.CrossRefGoogle Scholar
Djamali, M., Akhani, H., Andrieu-Ponel, V., Braconnot, P., Brewer, S., de Beaulieu, J.-L., Fleitmann, D., et al., 2010. Indian summer monsoon variations could have affected the early-Holocene woodland expansion in the Near East. Holocene 20, 813820.Google Scholar
Djamali, M., de Beaulieu, J.-L., Shah-hosseini, M., Andrieu-Ponel, V., Ponel, P., Amini, A., Akhani, H., et al., 2008. A late Pleistocene long pollen record from Lake Urmia, NW Iran. Quaternary Research 69, 413420.CrossRefGoogle Scholar
Fægri, K., Iversen, J., 1989. Textbook of pollen analysis (revised by Fægri, K., Kaland, P.E. and Krzywinski, K.). John Wiley and Sons. Google Scholar
Filipova-Marinova, M., Pavlov, D., Coolen, M., Giosan, L., 2013. First high-resolution marinopalynological stratigraphy of Late Quaternary sediments from the central part of the Bulgarian Black Sea area. Quaternary International 293, 170183.CrossRefGoogle Scholar
Fleitmann, D., Cheng, H., Badertscher, S., Edwards, R.L., Mudelsee, M., Göktürk, O.M., Fankhauser, A., et al., 2009. Timing and climatic impact of Greenland interstadials recorded in stalagmites from northern Turkey. Geophysical Research Letters 36, L19707. http://dx.doi.org/10.1029/2009GL040050.Google Scholar
Girard, M., Renault-Miskovsky, J., 1969. Nouvelles techniques de préparation en palynologie, appliquées à trois sédiments du Quaternaire final de l’Abri Cornille (Istres, Bouches-du-Rhone). Bulletin de l’Association Française pour l'Étude du Quaternaire 6, 275284.Google Scholar
Goeury, C., 1997. GpalWin: gestion, traitement et représentation de la paléoécologie. XVe Symposium de l’APLF, Lyon, France, p. 31.Google Scholar
Goeury, C., Beaulieu, J.L. de, 1979. A propos de la concentration du pollen à l’aide de la liqueur de Thoulet dans les sédiments minéraux. Pollen Spores 21, 239251.Google Scholar
Göktürk, O.M., Fleitmann, D., Badertscher, S., Cheng, H., Edwards, R.L., Leuenberger, M., Fankhauser, A., Tüysüz, O., Kramers, J., 2011. Climate on the Southern Black Sea coast during the Holocene: implications from the Sofular Cave record. Quaternary Science Reviews 30, 24332445.Google Scholar
Grimm, E., 1987. CONISS: a Fortran 77 Program for stratigraphically constraint cluster analysis by the method of incremental squares. Computers and Geosciences 13, 1335.CrossRefGoogle Scholar
Hamon, C., Jalabadze, M., Agapishvili, T., Baudouin, E., Koridze, I., Messager, E., 2016. Gadachrili Gora: Architecture and organisation of a Neolithic settlement in the middle Kura Valley (6th millennium BC, Georgia). Quaternary International 395, 154169.Google Scholar
Heiri, O., Lotter, A.F., Lemcke, G., 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25, 101110.Google Scholar
Huntley, B., Birks, H.J.B., 1983. An Atlas of Past and Present Pollen Maps for Europe: 0-13000 years ago. Cambridge University Press, Cambridge.Google Scholar
Joannin, S., Ali, A.A., Ollivier, V., Roiron, P., Peyron, O., Chevaux, S., Nahapetyan, S., Tozalakyan, P., Karakhanyan, A., Chataigner, C., 2014. Vegetation, fire and climate history of the Lesser Caucasus: a new Holocene record from Zarishat fen (Armenia). Journal of Quaternary Science 29, 7082.Google Scholar
Jones, M.D., Roberts, C.N., Leng, M.J., 2007. Quantifying climatic change through the last glacial–interglacial transition based on lake isotope palaeohydrology from central Turkey. Quaternary Research 67, 463473.Google Scholar
Kvavadze, E.V., 1993. On the interpretation of subfossil spore-pollen spectra in the mountains. Acta Palaeobotanica 33, 347360.Google Scholar
Kvavadze, E.V., Bukreeva, G.F., Rukhadze, L.P., 1992. Komp’iuternaia Tekhnologia Rekonstruktsii Paleogeograficheskikh Rekonstruksii V Gorakh (na primere golotsena Abkhazii). Metsniereba, Tbilisi, Georgia.Google Scholar
Kvavadze, E.V., Connor, S.E., 2005. Zelkova carpinifolia (Pallas) K. Koch in Holocene sediments of Georgia—an indicator of climatic optima. Review of Palaeobotany and Palynology 133, 6989.Google Scholar
Lebedev, V.A., Bubnov, S.N., Dudauri, O.Z., Vashakidze, G.T., 2008. Geochronology of Pliocene volcanism in the Dzhavakheti Highland (the Lesser Caucasus). Part 2: Eastern part of the Dzhavakheti Highland. Regional geological correlation. Stratigraphy and Geological Correlation 16, 553574.CrossRefGoogle Scholar
Lemcke, G., Sturm, M., 1997. δ18O and trace element measurements as proxy for the reconstruction of climate changes at Lake Van (Turkey): preliminary results. In: Dalfes, H.N., Kukla, G., Weiss, H. (Eds.), Third Millennium BC Climate Change and Old World Collapse. NATO ASI Series 49. Springer, Berlin, pp. 653678.Google Scholar
Leroy, S.A.G., Arpe, K., 2007. Glacial refugia for summer-green trees in Europe and south-west Asia as proposed by ECHAM3 time-slice atmospheric model simulations. Journal of Biogeography 34, 21152128.Google Scholar
Leroy, S.A.G., Lopez-Merino, L., Tudryn, A., Chalie, F., Gasse, F., 2014. Late Pleistocene and Holocene palaeoenvironments in and around the middle Caspian basin as reconstructed from a deep-sea core. Quaternary Science Reviews 101, 91110.Google Scholar
Leroy, S.A.G., Tudryn, A., Chalie, F., Lopez-Merino, L., Gasse, F., 2013. From the Allerød to the mid-Holocene: palynological evidence from the south basin of the Caspian Sea. Quaternary Science Reviews 78, 7797.CrossRefGoogle Scholar
Leroyer, C., Joannin, S., Aoustin, D., Ali, A.A., Peyron, O., Ollivier, V., Tozalakyan, P., Karakhanyan, A., Jude, F., 2016. Mid Holocene vegetation reconstruction from Vanevan peat (south-eastern shore of Lake Sevan, Armenia). Quaternary International 395, 518.Google Scholar
Litt, T., Krastel, S., Sturm, M., Kipfer, R., Örcen, S., Heumann, G., Franz, S.O., Ülgen, U. B., Niessen, F., 2009. ‘PALEOVAN’, International Continental Scientific Drilling Program (ICDP): site survey results and perspectives. Quaternary Science Reviews 28, 15551567.Google Scholar
Litt, T., Pickarski, N., Heumann, G., Stockhecke, M., Tzedakis, P.C., 2014. A 600,000 year long continental pollen record from Lake Van, eastern Anatolia (Turkey). Quaternary Science Reviews 104, 3041.Google Scholar
Margalitadze, N.A., 1971. The history of forests of the north-western part of the Trialeti Range in Holocene according to pollen analysis. Journal of Palynology (India) 7, 6975.Google Scholar
Margalitadze, N.A., 1977. Istoriia rastitel’nosti Dzhavakhetskogo Nagor’ia i Tsalkinskogo Plato v Golotsene [In Russian]. In: Tumadzhanov, I.I. (Ed.) Palinologicheskie issledovania v Gruzii. Metsniereba, Tbilisi, Georgia, pp. 124147.Google Scholar
Margalitadze, N.A., 1995. Istoriia golotsenovoi rastitel’nosti Gruzii[In Russian]. Metsniereba, Tbilisi, Georgia.Google Scholar
Matcharashvili, I., Arabuli, G., Darchiashvili, G., Gorgadze, G., 2004. Javakheti Wetlands: Biodiversity and Conservation [In Georgian and English]. NACRES, Tbilisi, Georgia.Google Scholar
Messager, E., Belmecheri, S., von Grafenstein, U., Nomade, S., Ollivier, V., Voinchet, P., Puaud, S., et al., 2013. Late Quaternary record of the vegetation and catchment-related changes from Lake Paravani (Javakheti, South Caucasus). Quaternary Science Reviews 77, 125140.Google Scholar
Nakhutsrishvili, G.S., 1999. The vegetation of Georgia (Caucasus). Braun-Blanquetia 15, 168.Google Scholar
Nomade, S., Scao, V., Guillou, H., Messager, E., Mgeladze, A., Voinchet, P., Renne, P.R., et al., 2016. New 40Ar/39Ar, unspiked K/Ar and geochemical constraints on the Pleistocene magmatism of the Samtskhe-Javakheti highlands (Republic of Georgia). Quaternary International 395, 4559.CrossRefGoogle Scholar
Ollivier, V., Fontugne, M., Lyonnet, B., 2015. Geomorphic response and 14C chronology of base-level changes induced by Late Quaternary Caspian Sea mobility (middle Kura Valley, Azerbaijan). Geomorphology 230, 109124.Google Scholar
Ollivier, V., Fontugne, M., Lyonnet, B., Chataigner, C., 2016. Base level changes, river avulsions and Holocene human mode of occupations in the Caspian Sea area (middle Kura valley, South Caucasus). Quaternary International 395, 7994.Google Scholar
Rasmussen, S.O., Andersen, K.K., Svensson, A., Steffensen, J.P., Vinther, B.M., Clausen, H.B., Siggaard-Andersen, M.-L., et al., 2006. A new Greenland ice core chronology for the last glacial termination. Journal of Geophysical Research: Atmospheres 111, D06102. http://dx.doi.org/10.1029/2005JD006079.Google Scholar
Reille, M., 1992. Pollen et Spores d’Europe et d’Afrique du Nord. Laboratoire de Botanique Historique et Palynologie, Marseille, France.Google Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., et al., 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 18691887.Google Scholar
Roberts, N., 2002. Did prehistoric landscape management retard the post-glacial spread of woodland in Southwest Asia? Antiquity 76, 10021010.CrossRefGoogle Scholar
Roberts, N., Reed, J.M., Leng, M.J., Kuzucuoğlu, C., Fontugne, M., Bertaux, J., Woldring, H., et al., 2001. The tempo of Holocene climatic change in the eastern Mediterranean region: new high-resolution craterlake sediment data from central Turkey. Holocene 11, 721736.Google Scholar
Roberts, N., Wright, H.E., Jr., 1993. Vegetational, lake-level and climatic history of the Near East and Southwest Asia. In: Wright, H.E. Jr., Kutzbach, J.E., Webb, T. III, Ruddiman, W.F., Street-Perrott, F.A., Bartlein, P.J. (Eds). Global Climates Since the Last Glacial Maximum. University of Minnesota Press, 194220.Google Scholar
Rohling, E.J., Abu-Zied, R., Casford, J.L.S., Hayes, A., Hoogakker, B.A.A., 2009. The marine environment: present and past. In: Woodward, J.C. (Ed.), The Physical Geography of the Mediterranean. Oxford University Press, Oxford, pp. 3367.Google Scholar
Rossignol-Strick, M., 1995. Sea-land correlation of pollen records in the Eastern Mediterranean for the glacial-interglacial transition: biostratigraphy versus radiometric time-scale. Quaternary Science Reviews 14, 293315.Google Scholar
Ryan, W.B.F., Pitman, W.C., Major, C.O., Shimkus, K., Moskalenko, V., Jones, G.A., Dimitrov, P., Gorür, N., Sakinç, M., Yüce, H., 1997. An abrupt drowning of the Black Sea shelf. Marine Geology 138, 119126.Google Scholar
Shatilova, I., Ramishvili, Sh., 1990. Materiali po istorii flori I rastitel’nosti Gruzii (in Russian), Metsniereba, Tbilissi, Georgia. Google Scholar
Shumilovskikh, L., Tarasov, P., Arz, H.W., Fleitmann, D., Marret, F., Nowaczyk, N., Plessen, B., Schlütz, F., Behling, H., 2012. Vegetation and environmental dynamics in the southern Black Sea region since 18 kyr BP derived from the marine core 22-GC3. Palaeogeography, Palaeoclimatology, Palaeoecology 337–338, 177193.Google Scholar
Stefanova, I., Ammann, B., 2003. Late-glacial and Holocene vegetation belts in the Pirin Mountains (southwestern Bulgaria). Holocene 13, 97107.Google Scholar
Stevens, L.R., Ito, E., Schwalb, A., Wright, H.E. Jr., 2006. Timing of atmospheric precipitation in the Zagros Mountains inferred from a multi-proxy record from Lake Mirabad, Iran. Quaternary Research 66, 494500.Google Scholar
Stevens, L.R., Wright, H.E. Jr., Ito, E., 2001. Proposed changes in seasonality of climate during the Lateglacial and Holocene at Lake Zeribar, Iran. Holocene 11, 747755.Google Scholar
Svensson, A., Andersen, K.K., Bigler, M., Clausen, H.B., Dahl-Jensen, D., Davies, S.M., Johnsen, S.J., et al., 2006. The Greenland Ice Core Chronology 2005, 15-42 ka. Part 2: comparison to other records. Quaternary Science Reviews 25, 32583267.Google Scholar
Turner, R., Roberts, N., Eastwood, W.J., Jenkins, E., Rosen, A., 2010. Fire, climate and the origins of agriculture: micro-charcoal records of biomass burning during the last glacial-interglacial transition in Southwest Asia. Journal of Quaternary Science 25, 371386.Google Scholar
Turner, R., Roberts, N., Jones, M.D., 2008. Climatic pacing of Mediterranean fire histories from lake sedimentary microcharcoal. Global and Planetary Change 63, 317324.Google Scholar
Tzedakis, P.C., 2007. Seven ambiguities in the Mediterranean palaeoenvironmental narrative. Quaternary Science Reviews 26, 20422066.Google Scholar
Van Zeist, W., Bottema, S., 1977. Palynological investigations in western Iran. Palaeohistoria 19, 1985.Google Scholar
Van Zeist, W., Bottema, S., 1991. Late Quaternary Vegetation of the Near East. Beihefte zum Tübinger Atlas des Vorderen Orients, Reihe A18. L. Reichert, Wiesbaden, Germany.Google Scholar
Volodicheva, N., 2002. The Caucasus. In: Shahgedanova M. (Ed.), The Physical Geography of Northern Eurasia. Oxford University Press, Oxford, pp. 350376.Google Scholar
Von Grafenstein, U., Erlenkeuser, H., Brauer, A., Jouzel, J., Johnsen, S.J., 1999. A mid-European decadal isotope-climate record from 15,500 to 5000 years B.P. Science 284, 16541657.Google Scholar
Watts, W.A., Allen, J.R.M., Huntley, B., Fritz, S.C., 1996. Vegetation history and climate of the last 15,000 years at Laghi di Monticchio, southern Italy. Quaternary Science Reviews 15, 113132.Google Scholar
Wick, L., 2000. Vegetational response to climatic changes recorded in Swiss Late Glacial lake sediments. Palaeogeography, Palaeoclimatology, Palaeoecology 159, 231250.Google Scholar
Wick, L., Lemcke, G., Sturm, M., 2003. Evidence of Lateglacial and Holocene climatic change and human impact in eastern Anatolia: high-resolution pollen, charcoal, isotopic and geochemical records from the laminated sediments of Lake Van, Turkey. Holocene 13, 665675.Google Scholar
Wright, H.E. Jr., Ammann, B., Stefanova, I., Atanassova, J., Margalitadze, N., Wick, L., Blyakharchuk, T., 2003. Lateglacial and early-Holocene dry climates from the Balkan peninsula to southern Siberia. In: Tonkov, S. (Ed.), Aspects of Palynology and Palaeoecology. Pensoft, Sofia, Bulgaria, pp. 127136.Google Scholar